首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2-Pyridone (pyridin-2-one) is a mimic of the uracil and thymine nucleobases, with only one N--H and C==O group. It provides a single H-bonding site, compared to three for the canonical pyrimidine nucleobases. Employing the supersonically cooled 9-methyladenine2-pyridone (9MAd x 2PY) complex, which is the simplest base pair to mimic adenine-uracil or adenine-thymine, we show that its gas-phase UV spectrum consists of contributions from two isomers. Based on the H-bonding sites of 9-methyladenine, these are the Watson-Crick and Hoogsteen forms. Combining two-color two-photon ionisation (2C-R2PI), UV-UV depletion and laser-induced fluorescence spectroscopies allows separation of the two band systems, revealing characteristic intermolecular in-plane vibrations of the two isomers. The calculated S(0) and S(1) intermolecular frequencies are in good agreement with the experimental ones. Ab initio calculations predict the Watson-Crick isomer to be slightly more stable (D(0)=-16.0 kcal mol(-1)) than the Hoogsteen isomer (D(0)=-15.0 kcal mol(-1)). The calculated free energies Delta(f)G(0) of the Watson-Crick and Hoogsteen isomers agree qualitatively with the experimental isomer concentration ratio of 3:1.  相似文献   

2.
A series of Rebek imide receptors with naphthalene or heteroaromatic platforms attached by amide or ester linkers have been prepared from the corresponding acyl chloride or anhydride; the X-ray crystal structure of the receptor-derived anhydride reveals a supramolecular H-bonded helix formation in the crystal; the complexes of adenine bound to the receptors by Hoogsteen H-bonding are found to be stabilised by stacking with a methylquinolinium ion, but destabilised by stacking with a perfluorinated naphthalene.  相似文献   

3.
The adenine-based fluorescent receptor 1 was designed and synthesized for the selective recognition of dicarboxylic acids in CH3CN. The recognition takes place through the Hoogsteen binding site of adenine with concomitant PET quenching of the anthracene moiety. The carboxylic acid binding to 1 was investigated by 1H NMR, X-ray, UV-vis, and fluorescence spectroscopic methods. The Hoogsteen (HG) cleft of receptor 1 is found to be selective for glutaric acid.  相似文献   

4.
A π-electron rich supramolecular polymer as an efficient fluorescent sensor for electron deficient nitroaromatic explosives has been synthesized, and the role of H-bonding in dramatic amplification of sensitivity/fluorescence quenching efficiency in the solid state has been established.  相似文献   

5.
Planar H-bonded and stacked structures of guanine...cytosine (G.C), adenine...thymine (A...T), 9-methylguanine...1-methylcytosine (mG...mC), and 9-methyladenine...1-methylthymine (mA...mT) were optimized at the RI-MP2 level using the TZVPP ([5s3p2d1f/3s2p1d]) basis set. Planar H-bonded structures of G...C, mG...mC, and A...T correspond to the Watson-Crick (WC) arrangement, in contrast to mA...mT for which the Hoogsteen (H) structure is found. Stabilization energies for all structures were determined as the sum of the complete basis set limit of MP2 energies and a (DeltaE(CCSD(T)) - DeltaE(MP2)) correction term evaluated with the cc-pVDZ(0.25,0.15) basis set. The complete basis set limit of MP2 energies was determined by two-point extrapolation using the aug-cc-pVXZ basis sets for X = D and T and X = T and Q. This procedure is required since the convergency of the MP2 interaction energy for the present complexes is rather slow, and it is thus important to include the extrapolation to the complete basis set limit. For the MP2/aug-cc-pVQZ level of theory, stabilization energies for all complexes studied are already very close to the complete basis set limit. The much cheaper D-->T extrapolation provided a complete basis set limit close (by less than 0.7 kcal/mol) to the more accurate T-->Q term, and the D-->T extrapolation can be recommended for evaluation of complete basis set limits of more extended complexes (e.g. larger motifs of DNA). The convergency of the (DeltaE(CCSD(T)) - DeltaE(MP2)) term is known to be faster than that of the MP2 or CCSD(T) correlation energy itself, and the cc-pVDZ(0.25,0.15) basis set provides reasonable values for planar H-bonded as well as stacked structures. Inclusion of the CCSD(T) correction is essential for obtaining reliable relative values for planar H-bonding and stacking interactions; neglecting the CCSD(T) correction results in very considerable errors between 2.5 and 3.4 kcal/mol. Final stabilization energies (kcal/mol) for the base pairs studied are very substantial (A...T WC, 15.4; mA...mT H, 16.3; A...T stacked, 11.6; mA...mT stacked, 13.1; G...C WC, 28.8; mG...mC WC, 28.5; G...C stacked, 16.9; mG...mC stacked, 18.0), much larger than published previously. On the basis of comparison with experimental data, we conclude that our values represent the lower boundary of the true stabilization energies. On the basis of error analysis, we expect the present H-bonding energies to be fairly close to the true values, while stacked energies are still expected to be about 10% too low. The stacking energy for the mG...mC pair is considerably lower than the respective H-bonding energy, but it is larger than the mA...mT H-bonding energy. This conclusion could significantly change the present view on the importance of specific H-bonding interactions and nonspecific stacking interactions in nature, for instance, in DNA. Present stabilization energies for H-bonding and stacking energies represent the most accurate and reliable values and can be considered as new reference data.  相似文献   

6.
Chloroform- and Freon-soluble mixed thymine, adenine complexes trans-[Pt(MeNH(2))(2)(ChmT-N3)(ChmA-N1)]NO(3) (2) and trans-[Pt(MeNH(2))(2)(ChmT-N3)(TBDMS-ado-N1)]BF(4) (3) (ChmT = anion of 1-cyclohexylmethylthymine ChmTH, ChmA = 9-cyclohexylmethyladenine, TBDMS-ado = 2',3',5'-tri-tert-butyldimethylsilyladenosine) have been prepared and characterized to study their propensity to undergo Hoogsteen and/or reversed Hoogsteen pairing in solution with free ChmTH and free 3',5'-diacetyl-2'-deoxyuridine, respectively. No Hoogsteen or reversed Hoogsteen pairing between 2 and ChmT takes place in CDCl(3). In Freon, partial H bonding between N1 platinated TBDMS-ado and 3',5'-diacetyl-2'-deoxyuridine as well as its [3-(15)N] labeled analogue is unambiguously observed only below 150 K. Comparison of (1)J ((15)N-(1)H) coupling constants of 3',5'-diacetyl-2'-deoxyuridine involved in Hoogsteen pairing with free and N1 platinated adenine suggests that the interaction is inherently weaker in the case of platinated adenine. To better understand the complete absence of hydrogen bonding between the ChmA ligand in 2 and free ChmTH, ab initio calculations (gas phase, 0 K) have been carried out for Hoogsteen pairs involving adenine (A) and thymine (T), as well as simplified analogues of 2 and T, both in the presence and absence of counteranions. The data strongly suggest that reduction of the effective positive charge of the heavy metal ion Pt(2+) by counterions diminishes interaction energies. With regard to mixtures of 2 and ChmTH in chloroform, this implies that ion pair formation between the cation of 2 and NO(3)(-) may be responsible for the lack of any measurable Hoogsteen pairing in this solvent.  相似文献   

7.
Binding studies of two sulfonamide-functionalized dibenzophenazine-based sensors are reported. Spectroscopic studies showed that both sensors are effective fluorescent turn-on sensors for several anions. Both sensors showed responses to acetate, benzoate, cyanide, and fluoride ions. NMR titrations confirmed the mode of binding of the sensors to be through H-bonding to the sulfonamide groups.  相似文献   

8.
Hoogsteen DNA base pairs (bps) are an alternative base pairing to canonical Watson–Crick bps and are thought to play important biochemical roles. Hoogsteen bps have been reported in a handful of X‐ray structures of protein–DNA complexes. However, there are several examples of Hoogsteen bps in crystal structures that form Watson–Crick bps when examined under solution conditions. Furthermore, Hoogsteen bps can sometimes be difficult to resolve in DNA:protein complexes by X‐ray crystallography due to ambiguous electron density and by solution‐state NMR spectroscopy due to size limitations. Here, using infrared spectroscopy, we report the first direct solution‐state observation of a Hoogsteen (G–C+) bp in a DNA:protein complex under solution conditions with specific application to DNA‐bound TATA‐box binding protein. These results support a previous assignment of a G–C+ Hoogsteen bp in the complex, and indicate that Hoogsteen bps do indeed exist under solution conditions in DNA:protein complexes.  相似文献   

9.
We present the crystal structure of the DNA duplex formed by d(ATATATCT). The crystals contain seven stacked antiparallel duplexes in the asymmetric unit with A.T Hoogsteen base pairs. The terminal CT sequences bend over so that the thymines enter the minor groove and form a hydrogen bond with thymine 2 of the complementary strand in the Hoogsteen duplex. Cytosines occupy extra-helical positions; they contribute to the crystal lattice through various kinds of interactions, including a unique CAA triplet. The presence of thymine in the minor groove apparently contributes to the stability of the DNA duplex in the Hoogsteen conformation. These observations open the way toward finding under what conditions the Hoogsteen duplex may be stabilized in vivo. The present crystal structure also confirms the tendency of A.T-rich oligonucleotides to crystallize as long helical stacks of duplexes.  相似文献   

10.
Poly d(A:T) parallel-stranded DNA duplexes based on the Hoogsteen and reverse Watson-Crick hydrogen bond pairing are studied by means of extensive molecular dynamics (MD) simulations and molecular mechanics coupled to Poisson-Boltzmann (MM-PB/SA) calculations. The structural, flexibility, and reactivity characteristics of Hoogsteen and reverse Watson-Crick parallel duplexes are described from the analysis of the trajectories. Theoretical calculations show that the two parallel duplexes are less stable than the antiparallel Watson-Crick duplex. The difference in stability between antiparallel and parallel duplexes increases steadily as the length of the duplex increases. The reverse Watson-Crick arrangement is slightly more stable than the Hoogsteen duplex, the difference being also increased linearly with the length of the duplex. A subtle balance of intramolecular and solvation terms is responsible for the preference of a given helical structure.  相似文献   

11.
Binding of an acetic acid (HAc) ligand to adenosine (A) was studied by (1)H NMR spectroscopic techniques. Using a low-melting deuterated Freon mixture as solvent, liquid-state measurements could be performed in the slow exchange regime and allowed a detailed characterization of the formed associates. Thus, at 128 K, trimolecular complexes A.HAc(2) and A(2).HAc with both Watson-Crick and Hoogsteen sites of the central adenine base occupied coexist in various amounts depending on the adenosine:acetic acid molar ratio. Whereas the carboxylic acid OH proton is located closer to the acid for all hydrogen bonds formed, a more deshielded proton at the Watson-Crick site is evidence for a stronger hydrogen bond as compared to the Hoogsteen interaction. For the binding of acetic acid to an adenosine-thymidine base pair in either a Watson-Crick or a Hoogsteen configuration, hydrogen bonds to the available adenine binding site are strengthened as compared to the corresponding hydrogen bonds in the A.HAc(2) complex.  相似文献   

12.
《Chemistry & biology》1996,3(1):57-65
zIntroduction: Based on molecular modeling studies, a model has been proposed for intercalation of triple-helixspecific ligands (benzopyridoindole (BPI) derivatives) into triple helices, in which the intercalating compounds interact mainly with the Hoogsteen-paired strands of the triple helix. We set out to test this model experimentally using DNA duplexes capable of forming parallel Hoogsteen base-paired structures.Results: We have investigated the possible formation of a parallel DNA structure involving Hoogsteen hydrogen bonds by thermal denaturation, FTIR spectroscopy and gel-shift experiments. We show that BPI derivatives bind to Hoogsteen base-paired duplexes and stabilize them. The compounds induce a reorganization from a non-perfectly matched antiparallel Watson-Crick duplex into a perfectly matched parallel Hoogsteen-paired duplex.Conclusions: These results suggest that preferential intercalation of BPI derivatives in triple helices is due to their ability to interact specifically with the Hoogsteen-paired bases. The results are consistent with a model proposed on the basis of molecular modeling studies using energy minimization, and they open a new field of investigations regarding the biological relevance of Hoogsteen base-pairing.  相似文献   

13.
The ability to form a ground-state charge-transfer (CT) complex between an electron acceptor, p-benzoquinone (BQ) and an electron donor, 2,6-dimethoxyphenol (DMOPh) was found to be enhanced by H-bonding of BQ to a hydrogen-bond donor, trifluoroacetic acid (TFA) and H-bonding DMOPh to a hydrogen-bond acceptor, 4-(N,N-dimethylamino)pyridine (DMAPy) [Chem. Phys. Lett. 2005, 401, 200]. Here is reported density functional theory (DFT) calculations to study the effect of H-bonding to electron donor and electron acceptor moieties on the ground-state CT complex formation ability between the aforementioned electron donor/acceptor pair. DFT calculations using B3LYP with the 6-311G(d,p) basis set show that the HOMO and LUMO energies of BQ drop on H-bonding to TFA through its C=O groups and the HOMO and LUMO energies of DMOPh increase on H-bonding to DMAPy via its O-H group. BQ molecules hydrogen-bonded as 1:1 and 1:2 complexes to TFA act as stronger acceptors than the bare molecule, while 1:1 complexes of DMOPh and DMAPy act as better donors. Vertical excitation energies for electronic transitions from the ground state to the first few excited states of BQ, DMOPh, DMAPy, and their different complexes have been investigated in the framework of time-dependent density functional theory (TD-DFT) to simulate and interpret experimental ultraviolet absorption spectra. Good agreement between experimental and calculated spectra is established. The enhancement of the CT complex formation ability between the BQ and DMOPh pair is favored by the strong H-bonding interaction of BQ with TFA as well as by the H-bonding interaction of DMOPh with DMAPy.  相似文献   

14.
Three 2-(benzimidazol-2-yl)-3-hydroxychromone derivatives were synthesized. Their spectroscopic and fluorescent properties, due to excited state intramolecular proton transfer (ESIPT) from OH to carbonyl, were studied. Theoretical possibility of an alternative intramolecular H-bonding and experimental evidence for such behavior are discussed.   相似文献   

15.
The dynamics of peptides has a direct connection to how quickly proteins can alter their conformations. The speed of exploring the free energy landscape depend on many factors, including the physical parameters of the environment, such as pressure and temperature. We performed a series of molecular dynamics simulations to investigate the pressure-temperature effects on peptide dynamics, especially on the torsional angle and peptide-water hydrogen bonding (H-bonding) dynamics. Here, we show that the dynamics of the omega angle and the H-bonding dynamics between water and the peptide are affected by pressure. At high temperature (500 K), both the dynamics of the torsional angle ω and H-bonding slow down significantly with increasing pressure, interestingly, at approximately the same rate. However, at a lower temperature of 300 K, the observed trend on H-bonding dynamics as a function of pressure reverses, i.e., higher pressure speeds up H-bonding dynamics.  相似文献   

16.
The structure of a new form of duplex DNA, the antiparallel Hoogsteen duplex, is studied in polyd(AT) sequences by means of state-of-the-art molecular dynamics simulations in aqueous solution. The structure, which was found to be stable in all of the simulations, has many similarities with the standard Watson-Crick duplex in terms of general structure, flexibility, and molecular recognition patterns. Accurate MM-PB/SA (and MM-GB/SA) analysis shows that the new structure has an effective energy similar to that of the B-type duplex, while it is slightly disfavored by intramolecular entropic considerations. Overall, MD simulations strongly suggest that the antiparallel Hoogsteen duplex is an accessible structure for a polyd(AT) sequence, which might compete under proper experimental conditions with normal B-DNA. MD simulations also suggest that chimeras containing Watson-Crick duplex and Hoogsteen antiparallel helices might coexist in a common structure, but with the differential characteristics of both type of structures preserved.  相似文献   

17.
Internal and rigid-body motions of bovine pancreatic trypsin inhibitor (BPTI) and of water molecules surrounding the BPTI are studied in a vicinity of an energy minimum using a normal mode analysis proposed as the independent molecule model. Water's rigid-body motion is predominant in comparison to its internal motions. We have derived information about the relationship between the magnitude of a thermal ellipsoid of an H-bonding atom and the anisotropy of its ellipsoid, and the relationship between the magnitude of the ellipsoid and the H-bond strength. We see a relationship between vibrational frequencies (assuming rigid-body motion of the water molecules) and the H-bond strength of the water taking part in this H-bonding. Analyzing the H-bond strength, we found that a hydrogen in water is likely to H-bond to oxygen in the protein, whereas an oxygen in water has a less strong preference to H-bond to the protein. For water molecules acting as the hydrogen acceptor, strong H-bonding has longer lifetimes than weak H-bonding.  相似文献   

18.
The structure of parallel-stranded duplexes of DNA-containing a mixture of guanines (G) and adenines (A) is studied by means of molecular dynamics (MD) simulation, as well as NMR and circular dichroism (CD) spectroscopy. Results demonstrate that the structure is based on the Hoogsteen motif rather than on the reverse Watson-Crick one. Molecular dynamics coupled to thermodynamic integration (MD/TI) calculations and melting experiments allowed us to determine the effect of 8-amino derivatives of A and G and of 8-amino-2'-deoxyinosine on the stability of parallel-stranded duplexes. The large stabilization of the parallel-stranded helix upon 8-amino substitution agrees with a Hoogsteen pairing, confirming MD, NMR, and CD data, and suggests new methods to obtain DNA triplexes for antigene and antisense purposes.  相似文献   

19.
Kim YK  Lee YH  Lee HY  Kim MK  Cha GS  Ahn KH 《Organic letters》2003,5(21):4003-4006
[reaction: see text] A novel trifluoroacetophenone-based binding motif has been developed that recognizes anions such as carboxylates through reversible formation of anion-ionophore adducts that are stabilized by intramolecular H-bonding. The intramolecular H-bonding resulted in more than 10-fold enhancement in the binding affinity and an enthalpy gain (DeltaH degrees ) of 3.0 kcal/mol for the binding of an acetate ion when compared to the case without the intramolecular H-bonding.  相似文献   

20.
S K-edge XAS for a low-spin NiII-thiolate complex shows a 0.2 eV shift to higher pre-edge energy but no change in Ni-S bond covalency upon H-bonding. This is different from the H-bonding effect we observed in high-spin FeIII-thiolate complexes where there is a significant decrease in Fe-S bond covalency but no change in energy due to H-bonding (Dey, A.; Okamura, T.-A.; Ueyama, N.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc. 2005, 127, 12046-12053). These differences were analyzed using DFT calculations, and the results indicate that two different types of H-bonding interactions are possible in metal-thiolate systems. In the high-spin FeIII-thiolate case, the H-bonding involves a thiolate donor orbital which is also involved in bonding with the metal (active), while in the low-spin NiII-thiolate, the orbital involved in H-bonding is nonbonding with respect to the M-S bonding (passive). The contributions of active and passive H-bonds to the reduction potential and Lewis acid properties of a metal center are evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号