首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
We report enhanced sample confinement on microfluidic devices using a combination of electrokinetic flow from adjacent control channels and electric field shaping with an array of channels perpendicular to the sample stream. The basic device design consisted of a single first dimension (1D) channel, intersecting an array of 32 or 96 parallel second dimension (2D) channels. To minimize sample dispersion and leakage into the parallel channels as the sample traversed the sample transfer region, control channels were placed to the left and right of the 1D and waste channels. The electrokinetic flow from the control channels confined the sample stream and acted as a buffer between the sample stream and the 2D channels. To further enhance sample confinement, the electric field was shaped parallel to the sample stream by placing the channel array in close proximity to the sample transfer region. Using COMSOL Multiphysics, initial work focused on simulating the electric fields and fluid flows in various device geometries, and the results guided device design. Following the design phase, we fabricated devices with 40, 80, and 120 microm wide control channels and evaluated the sample stream width as a function of the electric field strength ratio in the control and 1D channels (E(C)/E(1D)). For the 32 channel design, the 40 and 80 microm wide control channels produced the most effective sample confinement with stream widths as narrow as 75 microm, and for the 96 channel design, all three control channel widths generated comparable sample stream widths. Comparison of the 32 and 96 channel designs showed sample confinement scaled easily with the length of the sample transfer region.  相似文献   

2.
The behaviour of droplets entering a microfluidic chamber designed to house microelectrode detectors for real time analysis of clinical microdialysate is described. We have designed an analysis chamber to collect the droplets produced by multiphase flows of oil and artificial cerebral spinal fluid. The coalescence chamber creates a constant aqueous environment ideal for the placement of microelectrodes avoiding the contamination of the microelectrode surface by oil. A stream of alternating light and dark coloured droplets were filmed as they passed through the chamber using a high speed camera. Image analysis of these videos shows the colour change evolution at each point along the chamber length. The flow in the chamber was simulated using the general solution for Poiseuille flow in a rectangular chamber. It is shown that on the centre line the velocity profile is very close to parabolic, and an expression is presented for the ratio between this centre line velocity and the mean flow velocity as a function of channel aspect ratio. If this aspect ratio of width/height is 2, the ratio of flow velocities closely matches that of Poiseuille flow in a circular tube, with implications for connections between microfluidic channels and connection tubing. The droplets are well mixed as the surface tension at the interface with the oil dominates the viscous forces. However once the droplet coalesces with the solution held in the chamber, the no-slip condition at the walls allows Poiseuille flow to take over. The meniscus at the back of the droplet continues to mix the droplet and acts as a piston until the meniscus stops moving. We have found that the no-slip conditions at the walls of the chamber, create a banding effect which records the history of previous drops. The optimal position for sensors is to be placed at the plane of droplet coalescence ideally at the centre of the channel, where there is an abrupt concentration change leading to a response time ?16 ms, the compressed frame rate of the video. Further away from this point the response time and sensitivity decrease due to convective dispersion.  相似文献   

3.
Basant Giri  Debashis Dutta 《Electrophoresis》2022,43(13-14):1399-1407
We have previously reported a novel approach to implementing multiplex enzyme-linked immunosorbent assay (ELISA) in connected microchannels by exploiting the slow diffusion of the enzyme reaction product across the different assay segments. This work builds on that report by implementing the noted assay in segments arranged along the circumference of a circular channel layout to reduce the footprint size and sample volume requirement. Using the current design, a 5-plex cytokine ELISA was demonstrated in a 1.5 × 1.5-cm region, which corresponded to a reduction in the footprint area by about a factor of 3 compared to that reported in our previous study. Additionally, the selective coating of our assay segments with the target molecules was realized in this work using electroosmosis instead of hydrodynamic flow as was the case in the previous report. This aspect of our experimental design is particularly significant as it permits the use of cross-sectional channel dimensions significantly shorter than those employed in the current work. Moreover, the use of an electric field for coating purposes enables the integration of functionalities such as electrokinetic preconcentration of analyte molecules during the sample incubation period that can further enhance the capabilities of our assay method.  相似文献   

4.
The use of microfluidic devices has become increasingly popular in the study of chemotaxis due to the exceptional control of flow properties and concentration profiles on the length scale of individual cells. In these applications, it is often neglected that cells, attached to the inner surfaces of the microfluidic chamber, are three-dimensional objects that perturb and distort the flow field in their vicinity. Depending on the interplay of flow speed and geometry with the diffusive time scale of the chemoattractant in the flow, the concentration distribution across the cell membrane may differ strongly from the optimal gradient in a perfectly smooth channel. We analyze the underlying physics in a two-dimensional approximation and perform systematic numerical finite element simulations to characterize the three-dimensional case and to identify optimal flow conditions.  相似文献   

5.
A novel methodology to design on-chip conduction channels is presented for expansion of low-dispersion separation channels. Designs are examined using two-dimensional numerical solutions of the Laplace equation with a Monte Carlo technique to model diffusion. The design technique relies on trigonometric relations that apply for ideal electrokinetic flows. Flows are rotated and stretched along the abrupt interface between adjacent regions having differing specific permeability. Multiple interfaces can be placed in series along a channel. The resulting channels can be expanded to extreme widths while minimizing dispersion of injected analyte bands. These channels can provide a long path length for line-of-sight optical absorption measurements. Expanded sections can be reduced to enable point detection at the exit section of the channel. Designed to be shallow, these channels have extreme aspect ratios in the wide section, greatly increasing the surface-to-volume ratio to increase heat removal and decrease unwanted pressure-driven flow. The use of multiple interfaces is demonstrated by considering several three-interface designs. Faceted flow splitters can be constructed to divide channels into any number of exit channels while minimizing dispersion. The resulting manifolds can be used to construct medians for structural support in wide, shallow channels.  相似文献   

6.
Dielectrophoresis is a versatile tool for the sorting, immobilization, and characterization of cells in microfluidic systems. The performance of dielectrophoretic systems strongly relies on the configuration of microelectrodes, which produce a nonuniform electric field. However, once fabricated, the microelectrodes cannot be reconfigured to change the characteristics of the system. Here, we show that the reorientation of the microfluidic channel with respect to the microelectrodes can be readily utilized to alter the characteristics of the system. This enables us to change the location and density of immobilized viable cells across the channel, release viable cells along customized numbers of streams within the channel, change the deflection pattern of nonviable cells along the channel, and improve the sorting of viable and nonviable cells in terms of flow throughput and efficiency of the system. We demonstrate that the reorientation of the microfluidic channel is an effective tool to create versatile dielectrophoretic platforms using the same microelectrode design.  相似文献   

7.
Eyal S  Quake SR 《Electrophoresis》2002,23(16):2653-2657
Pressure-driven flow in microfluidic channels is characterized by a distribution of velocities. This distribution makes it difficult to implement conventional flow cytometry data analysis. We have demonstrated a method to measure velocity as an independent parameter when performing microfluidic flow cytometry. This method allows velocity-independent analysis of particles such as beads or cells, and allows flow cytometry analysis of extended objects, such as long DNA molecules. It allows accurate flow cytometry in transient and nonuniform flows. This general measurement method could be used in the future to measure the velocity of particles in a variety of existing microfluidic devices without the need for changes in their design.  相似文献   

8.
Passive microfluidic channel geometries for control of droplet fission, fusion and sorting are designed, fabricated, and tested. In droplet fission, the inlet width of the bifurcating junction is used to control the range of breakable droplet sizes and the relative resistances of the daughter channels were used to control the volume of the daughter droplets. Droplet fission is shown to produce concentration differences in the daughter droplets generated from a primary drop with an incompletely mixed chemical gradient, and for droplets in each of the bifurcated channels, droplets were found to be monodispersed with a less than 2% variation in size. Droplet fusion is demonstrated using a flow rectifying design that can fuse multiple droplets of same or different sizes generated at various frequencies. Droplet sorting is achieved using a bifurcating flow design that allows droplets to be separated base on their sizes by controlling the widths of the daughter channels. Using this sorting design, submicron satellite droplets are separated from the larger droplets.  相似文献   

9.
We study the elastic deformation of poly(dimethylsiloxane) (PDMS) microchannels under imposed flow rates and the effect of this deformation on the laminar flow profile and pressure distribution within the channels. Deformation is demonstrated to be an important consideration in low aspect ratio (height to width) channels and the effect becomes increasingly pronounced for very shallow channels. Bulging channels are imaged under varying flow conditions by confocal microscopy. The deformation is related to the pressure and is thus non-uniform throughout the channel, with tapering occurring along the stream-wise axis. The measured pressure drop is monitored as a function of the imposed flow rate. For a given pressure drop, the corresponding flow rate in a deforming channel is found to be several times higher than expected in a non-deforming channel. The experimental results are supported by scaling analysis and computational fluid dynamics simulations coupled to materials deformation models.  相似文献   

10.
This paper describes the design, fabrication, and test of a PDMS/PMMA-laminated microfluidic device for an immunosensing biochip. A poly(dimethyl siloxane)(PDMS) top substrate molded by polymer casting and a poly(methyl methacrylate)(PMMA) bottom substrate fabricated by hot embossing are bonded with pressure and hermetically sealed. Two inlet ports and an air vent are opened through the PDMS top substrate, while gold electrodes for electrochemical biosensing are patterned onto the PMMA bottom substrate. The analyte sample is loaded from the sample inlet port to the detection chamber by capillary force, without any external intervening forces. For this and to control the time duration of sample fluid in each compartment of the device, including the inlet port, diffusion barrier, reaction chamber, flow-delay neck, and detection chamber, the fluid conduit has been designed with various geometries of channel width, depth, and shape. Especially, the fluid path has been designed so that the sample flow naturally stops after filling the detection chamber to allow sufficient time for biochemical reaction and subsequent washing steps. As model immunosensing tests for the microfluidic device, functionalizations of ferritin and biotin to the sensing surfaces on gold electrodes and their biospecific interactions with antiferritin antiserum and streptavidin have been investigated. An electrochemical detection method for immunosensing by biocatalyzed precipitation has been developed and applied for signal registration. With the biochip, the whole immunosensing processes could be completed within 30 min.  相似文献   

11.
Yang S  Liu J  DeVoe DL 《Lab on a chip》2008,8(7):1145-1152
Multidimensional microfluidic separation systems combining a first dimension microchannel with an array of parallel second dimension microchannels can suffer from non-uniform sample transfer between the dimensions, sample leakage, and injection plug tailing within the second dimension array. These factors can significantly reduce overall two-dimensional separation performance. In this paper, numerical and analytical models reveal an optimized chip design which combines multidimensional backbiasing and an angled channel geometry to ensure leakage-free and uniform interdimensional sample transfer, while also minimizing injected sample plug lengths. The optimized design is validated experimentally using a multidimensional chip containing five second dimension channels.  相似文献   

12.
The design, fabrication, and characterization of microfluidic channel flow devices for in situ simultaneous hydrodynamic electrochemical ESR is reported. The microelectrochemical reactors consist of gold film electrodes situated within rectangular ducts of height 350 microm and widths in the range 500-2000 microm. The small dimensions of the channels result in minimal dielectric loss when centralized within a cylindrical TE011 resonant cavity, leading to a high level of sensitivity. This is demonstrated by using the one-electron oxidation of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) in acetonitrile as a model system, wherein the ESR spectra obtained for the corresponding stable radical cation are of a high signal-to-noise ratio. Signal intensity is measured as a function of flow rate for this system, and the behavior is validated by means of 3-dimensional numerical modeling of the hydrodynamic flow profile.  相似文献   

13.
A new technique for controlling discrete sample injection in straight-cross microfluidic chips is presented here. This technique involves a three-part process with a dynamic loading step in between the steady-state loading step and the dispensing step. During the intermediate step, sample is pumped into the intersection and into the three connecting channels. The key features of this technique are the ability to dynamically control the sample size and the ability to inject well-defined samples at the original sample concentration. Injections of these samples with lengths varying from 2 channel widths (100 microm) to 20 channel widths (millimeter-sized) are demonstrated. The sample concentration profiles obtained are compared with those of focused and less-focused pinched-valve injections. In applications such as high-speed capillary zone electrophoresis, this technique can provide an increase in signal with a small increase in sample length. This technique is especially applicable to many large-sample applications in which the offset twin-T microchip has been previously employed.  相似文献   

14.
A method to continuously separate different particle types in a suspension is reported. Acoustic forces in a standing wave field were utilized to discriminate lipid particles from erythrocytes in whole blood. The presented technology proposes a new method of cleaning, i.e. removing lipid emboli from, shed blood recovered during cardiac surgery. Blood contaminated with lipid particles enter a laminar flow micro channel. Erythrocytes and lipid particles suspended in blood plasma are exposed to a half wavelength standing wave field orthogonal to the direction of flow as they pass through the channel. Because of differences in compressibility and density the two particle types move in different directions, the erythrocytes towards the centre of the channel and the lipid particles towards the side walls. The end of the channel is split into three outlet channels conducting the erythrocytes to the centre outlet and the lipid particles to the side outlets due to the laminar flow profile. The separation channel was evaluated in vitro using polyamide spheres suspended in water, showing separation efficiencies approaching 100%. The system was also evaluated on whole blood using tritium labelled lipid particles added to bovine blood. More than 80% of the lipid particles could be removed while approximately 70% of the erythrocytes were collected in one third of the original fluid volume. The study showed that the further reduced micro channel dimensions provided improved performance with respect to; (i) separation efficiency, (ii) actuation voltage, and (iii) volumetric throughput as compared to earlier work.  相似文献   

15.
The characteristics of electrokinetic flow in a microchannel depend on both the nature of surface potentials, that is, whether it is uniform or nonuniform, and the electrical potential distribution along the channel. In this paper, the nonlinear Poisson-Boltzmann equation is used to model the electrical double layer and the lattice Boltzmann model coupled with the constraint of current continuity is used to simulate the microfluidic flow field in a rectangular microchannel with a step variation of surface potentials. This current continuity, including surface conduction, convection, and bulk conduction currents, has often been neglected in the literature for electroosmotic flow with nonuniform (heterogeneous) microchannels. Results show that step variation of ion distribution caused by step variation surface potential will influence significantly the electrical potential distribution along the channel and volumetric flow rate. For the system considered, we showed that the volumetric flow rate could have been overestimated by as much as 70% without consideration of the current continuity constraint.  相似文献   

16.
A one-step immunomagnetic separation technique was performed on a microfluidic platform for the isolation of specific cells from blood samples. The cell isolation and purification studies targeted T cells, as a model for low abundance cells (about 1:10,000 cells), with more dilute cells as the ultimate goal. T cells were successfully separated on-chip from human blood and from reconstituted blood samples. Quantitative polymerase chain reaction analysis of the captured cells was used to characterize the efficiency of T cell capture in a variety of flow path designs. Employing many (4-8), 50 microm deep narrow channels, with the same overall cross section as a single, 3 mm wide channel, was much more effective in structuring dense enough magnetic bead beds to trap cells in a flowing stream. The use of 8-multiple bifurcated flow paths increased capture efficiencies from approximately 20 up to 37%, when compared to a straight 8-way split design, indicating the value of ensuring uniform flow distribution into each channel in a flow manifold for effective cell capture. Sample flow rates of up to 3 microL min(-1) were evaluated in these capture beds.  相似文献   

17.
High‐throughput particle counting by a differential resistive pulse sensing method in a microfluidic chip is presented in this paper. A sensitive differential microfluidic sensor with multiple detecting channels and one common reference channel was devised. To test the particle counting performance of this chip, an experimental system which consists of the microfluidic chip, electric resistors, an amplification circuit, a LabView based data acquisition device was developed. The influence of the common reference channel on the S/N of particle detection was investigated. The relationship between the hydraulic pressure drop applied across the detecting channel and the counting throughput was experimentally obtained. The experimental results show that the reference channel designed in this work can improve the S/N by ten times, thus enabling sensitive high‐throughput particle counting. Because of the greatly improved S/N, the sensing gate with a size of 25 × 50 × 10 μm (W × L × H) in our chips can detect and count particles larger than 1.5 μm in diameter. The counting throughput increases with the increase in the flowing velocity of the sample solution. An average throughput of 7140/min under a flow rate of 10 μL/min was achieved. Comparing with other methods, the structure of the chip and particle detecting mechanism reported in this paper is simple and sensitive, and does not have the crosstalking problem. Counting throughput can be adjusted simply by changing the number of the detecting channels.  相似文献   

18.
Micellar affinity gradient focusing (MAGF) is a microfluidic counterflow gradient focusing technique that combines the favorable features of MEKC and temperature gradient focusing. MAGF separates analytes on the basis of a combination of electrophoretic mobility and partitioning with the micellar phase. A temperature gradient is produced along the separation channel containing an analyte/micellar system to create a gradient in interaction strength (retention factor) between the analytes and micelles. Combined with a bulk counterflow, species concentrate at a unique point where their total velocity sums to zero. MAGF can be used in scanning mode by varying the bulk flow so that a large number of analytes can be sequentially focused and passed by a single detection point. In this work, we develop a bilinear temperature gradient along the separation channel that improves separation performance over the conventional linear designs. The temperature profile along the channel consists of a very sharp gradient used to preconcentrate the sample followed by a shallow gradient that increases resolution. We fabricated a hybrid PDMS/glass microfluidic chip with integrated micro heaters that generate the bilinear profile. Performance is characterized by separating several different samples including fluorescent dyes using SDS surfactant and pI markers using both SDS and poly-SUS surfactants as the micellar phase. The new design shows a nearly two times improvement in peak capacity and resolution in comparison to the standard linear temperature gradient.  相似文献   

19.
Zhang-Run Xu  Cui-Hong Liu  Jin Fang 《Talanta》2010,80(3):1088-1093
A novel microfluidic chip integrating an osmosis-based micro-pump was developed and used for perfusion cell culture. The micro-pump includes two sealed chambers, i.e., the inner osmotic reagent chamber and the outer water chamber, sandwiching a semi-permeable membrane. The water in the outer chamber was forced to flow through the membrane into the inner chamber via osmosis, facilitating continuous flow of fluidic zone in the channel. An average flow rate of 0.33 μL min−1 was obtained within 50 h along with a precision of 4.3% RSD (n = 51) by using a 100 mg mL−1 polyvinylpyrrolidone (PVP) solution as the osmotic driving reagent and a flow passage area of 0.98 cm2 of the semi-permeable membrane. The power-free micro-pump has been demonstrated to be pulse-free offering stable flow rates during long-term operation. The present microfluidic chip has been successfully applied for the perfusion culture of human colorectal carcinoma cell by continuously refreshing the culture medium with the osmotic micro-pump. In addition, in situ cell immunostaining was also performed on the microchip by driving all the reagent zones with the integrated micro-pump.  相似文献   

20.
Using COMSOL multiphysics software and a previously validated 3D numerical model, performances of a novel air-breathing microfluidic fuel cell (MFFC) are discussed. The microfluidic fuel cell employs a simple structure composed of a flow channel with sloped upper wall, a gas diffusion cathode and a finny anode. Furthermore it can reduce the losses related to mixing in fuel-electrolyte interface and also promote the replenishment of the depletion layer on anode surfaces. Thus, high fuel utilization can be achieved. Numerical simulations show that the fuel utilization can be up to 70%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号