首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solubilization of water and aqueous NaCl solutions in mixed reverse micellar systems of anionic surfactant AOT and nonionic surfactants in n-heptane was studied. It was found that the maximum solubilization capacity of water was higher in the presence of certain concentrations of NaCl electrolyte, and these concentrations increased with the increase of nonionic surfactant content and their EO chain length. Soluibilization capacity was enhanced by mixing AOT with nonionic surfactants. The observed phenomena were interpreted in terms of the stability of the interfacial film of reverse micellar microdroplet and the packing parameter of the surfactant that formed mixed reverse micelles.  相似文献   

2.
Kinetics of the reduction of 3-chloroacetophenone (CAF) with sodium borohydride (NaBH(4)) were followed by UV-vis spectroscopy at 27.0 degrees C in different reverse micellar media, toluene/BHDC/water and toluene/AOT/water, and compared with results in an isooctane/AOT/water reverse micellar system. AOT is sodium 1,4-bis-2-ethylhexylsulfosuccinate, and BHDC is benzyl-n-hexadecyl dimethylammonium chloride. The kinetic profiles were investigated as a function of variables such as surfactant and NaBH(4) concentration and the amount of water dispersed in the reverse micelles, W(0) = [H(2)O]/[surfactant]. In all cases, the first-order rate constant, k(obs), increases with the concentration of surfactant as a consequence of incorporating the substrate into the interface of the reverse micelles where the reaction takes place. The reaction is faster at the cationic interface than at the anionic one probably because the negative ion BH(4)(-) is part of the cationic interface. The effect of the external solvent on the reaction shows that reduction is favored in the isooctane/AOT/water reverse micellar system than that with an aromatic solvent. This is probably due to BH(4)(-) being more in the water pool of the toluene/AOT/water reverse micellar system. The kinetic profile upon water addition depends largely on the type of interface. In the BHDC system, k(obs) increases with W(0) in the whole range studied while in AOT the kinetic profile has a maximum at W(0) approximately 5, probably reflecting the fact that BH(4)(-) is part of the cationic interface while, in the anionic one, there is a strong interaction between water and the polar headgroup of AOT below W(0) = 5 and, above that, BH(4)(-) is repelled from the interface once the water pool has formed. Application of a kinetic model based on the pseudophase formalism, which considers the distribution of the ketone between the continuous medium and the interface and assumes that reaction takes place only at the interface, has enabled us to estimate rate constants at the interface of the reverse micellar systems. At W(0) < 10, it was considered that NaBH(4) is wholly at the interface and, at W(0) >/= 10, where there are free water molecules, also the partitioning between the interface and the water pool was taken into account. The results were used to evaluate CAF and NaBH(4) distribution constants between the different pseudophases as well as the second-order reaction rate constant of the reduction reaction in the micellar interface.  相似文献   

3.
The reduction of three aromatic ketones, acetophenone (AF), 4-methoxyacetophenone (MAF), and 3-chloroacetophenone (CAF), by NaBH(4) was followed by UV-vis spectroscopy in reverse micellar systems of water/AOT/isooctane at 25.0 degrees C (AOT is sodium 1,4-bis-2-ethylhexylsulfosuccinate). The first-order rate constants, k(obs), increase with the concentration of surfactant due to the substrate incorporation at the reverse micelle interface, where the reaction occurs. For all the ketones the reactivity is lower at the micellar interface than in water, probably reflecting the low affinity of the anionic interface for BH(4)(-). Kinetic profiles upon water addition show maxima in k(obs) at W(0) approximately 5 probably reflecting a strong interaction between water and the ionic headgroup of AOT; at W(0) < 5 by increasing W(0) BH(4)(-) is repelled from the anionic interface once the water pool forms. The order of reactivity was CAF > AF > MAF. Application of a kinetic model based on the pseudophase formalism, which considers distribution of the ketones between the continuous medium and the interface, and assumes that reaction take place only at the interface, gives values of the rate constants at the interface of the reverse micellar system. At W(0) = 5, we conclude that NaBH(4) is wholly at the interface, and at W(0) = 10 and 15, where there are free water molecules, the partitioning between the interface and the water pool has to be considered. The results were used to estimate the ketone and borohydride distribution constants between the different pseudophases as well as the second-order reaction rate constant at the micellar interface.  相似文献   

4.
The first use of the phenyl cation trapping technique in "snap-shooting" the local molar concentrations of water and sulfosuccinate head-groups in the interfacial region of AOT-2,2,4-trimethylpentane-water reverse micelles has been accomplished. Our results demonstrate that the interfacial concentrations of the sulfosuccinate head-groups in AOT (0.1 M)-2,2,4-trimethylpentane-water reverse micelles are remarkably high (2.75-2.34 M) across the W0 (the molar ratio of water to surfactant) range 12 to 44. However, the interfacial concentrations of water in AOT- 2,2,4-trimethylpentane-water reverse micelles across the same range of solution compositions are significantly lower (27.9-32.0 M) than the molar concentration of bulk water (55.5 M). The present results provide new insight on the microenvironments of interfacially located enzymes such as lipases entrapped in AOT-2,2,4-trimethylpentane-water reverse micelles, the most extensively exploited reverse-micellar system in micellar biotechnology.  相似文献   

5.
Fluorescence anisotropies of two structurally similar ionic probes, rhodamine 110 and fluorescein, were measured in di(2-ethylhexyl) sodium sulfosuccinate (AOT) reverse micelles as a function of the mole ratio of water to surfactant W. This study was undertaken to explore the influence of water droplet size and electrostatic interactions on the rotational diffusion of the probe molecules. It was noticed that at W = 1 and 2, the anisotropy decays of both the probes display single-exponential behavior and for a particular value of W, the time constants sensed by rhodamine 110 and fluorescein are identical. Moreover, an increase in the reorientation time was observed from W = 1 to 2. These observations indicate that, at W = 1 and 2, it is the overall rotation of micelle which is responsible for the decay of the anisotropy and also rule out the possibility of internal rotation of the probes within the reverse micelles. However, from W = 4 to 20, the anisotropy decays of the probes could only be described by a biexponential function with two time constants. The rotational diffusion of rhodamine 110 and fluorescein in the above-mentioned range of W was rationalized using the two-step model. The average reorientation time decreases with an increase in W for both the probes, and this decrease is pronounced in the case of fluorescein compared to that in rhodamine 110. The decrease in the average reorientation time with W is due to the change in the micellar packing within the core. The significant reduction in the average reorientation time of fluorescein is a consequence of repulsive electrostatic interactions between the negatively charged probe and the anionic head groups of the surfactant AOT.  相似文献   

6.
The conductivity of AOT/IPM/water reverse micellar systems as a function of temperature, has been found to be non-percolating at three different concentrations (100, 175 and 250 mM), while the addition of nonionic surfactants [polyoxyethylene(10) cetyl ether (Brij-56) and polyoxyethylene(20) cetyl ether (Brij-58)] to these systems exhibits temperature-induced percolation in conductance in non-percolating AOT/isopropyl myristate (IPM)/water system at constant compositions (i.e., at fixed total surfactant concentration, omega and X(nonionic)). The influence of total surfactant concentration (micellar concentration) on the temperature-induced percolation behaviors of these systems has been investigated. The effect of Brij-58 is more pronounced than that of Brij-56 in inducing percolation. The threshold percolation temperature, Tp has been determined for these systems in presence of additives of different molecular structures, physical parameters and/or interfacial properties. The additives have shown both assisting and resisting effects on the percolation threshold. The additives, bile salt (sodium cholate), urea, formamide, cholesteryl acetate, cholesteryl benzoate, toluene, a triblock copolymer [(EO)13(PO)30(EO)13, Pluronic, PL64], polybutadiene, sucrose esters (sucrose dodecanoates, L-1695 and sucrose monostearate S-1670), formamide distinctively fall in the former category, whereas sodium chloride, cholesteryl palmitate, crown ether, ethylene glycol constitute the latter for both systems. Sucrose dodecanoates (L-595) had almost marginal effect on the process. The observed behavior of these additives on the percolation phenomenon has been explained in terms of critical packing parameter and/or other factors, which influence the texture of the interface and solution properties of the mixed reverse micellar systems. The activation energy, Ep for the percolation process has been evaluated. Ep values for the AOT/Brij-56 systems have been found to be lower than those of AOT/Brij-58 systems. The concentration of additives influence the parameters Tp and Ep for both systems. A preliminary report for the first time on the percolation phenomenon in mixed reverse micelles in presence of additives has been suggested on the basis of these parameters (Tp and Ep).  相似文献   

7.
Photophysical properties of 3-acetyl-4-oxo-6,7-dihydro-12H-indolo[2,3-a]quinolizine (AODIQ), a bioactive molecule, has been investigated in well-characterized, monodispersed biomimicking nanocavities formed by sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in heptane using steady-state and picosecond time resolved fluorescence and fluorescence anisotropy. The emission behavior of AODIQ is very much dependent upon the water/surfactant mole ratio (W), i.e., on the water pool size of the reverse micellar core. AODIQ exhibits a sharp decrease in fluorescence anisotropy with increasing W, implying that the overall motional restriction experienced by the molecule is decreased with increased hydration. Some of the depth-dependent relevant fluorescence parameters, namely, fluorescence maxima and fluorescence anisotropy (r), have been monitored for exploiting the distribution and microenvironment around the probe in the reverse micelles. Fluorescence spectral position and fluorescence quenching studies suggest that the probe does not penetrate into the reverse micellar core; rather it binds at the interfacial region. Quantitaive estimates of the micropolarity and microviscosity at the binding sites of the probe molecule have been determined as a function of W.  相似文献   

8.
The structural effect of trehalose confined in water-containing sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reversed micelles at water to AOT molar ratio W = 5 and 10 as a function of the trehalose to AOT molar ratio T (0 < T < 0.1) has been investigated by small-angle neutron scattering (SANS). SANS data analysis is consistent with the hypothesis that trehalose is encapsulated within the quite spherical hydrophilic micellar cores of water-containing reversed micelles, causing an increase of the aggregate size and a decrease of the polydispersion. Moreover, SANS results suggest that the trehalose confinement in water-containing reversed micelles involves marked changes on the molecular packing of the water-containing micellar cores. In particular, according to the obtained findings, we can hypothesize the intercalation of the trehalose molecules between the polar surfactant headgroups. The preferential solubilization in this specific nanodomain could explain the trehalose capability to prevent, upon dehydration, the transition to a gel phase, hindering serious damage to biostructures.  相似文献   

9.
The nucleophilic aromatic substitution (S(N)Ar) reaction between 1-fluoro-2,4-dinitrobenzene and piperidine (PIP) were studied in two different reverse micellar interfaces: benzene/sodium 1,4-bis(2-ethylhexyl) sulfosuccinate (AOT)/water and benzene/benzyl-n-hexadecyl dimethylammonium chloride (BHDC)/water reverse micellar media. The kinetic profiles of the reactions were investigated as a function of variables such as surfactant and amine concentration and the amount of water dispersed in the reverse micelles, W0 = [H2O]/[surfactant]. In the AOT system at W0 = 0, no micellar effect was observed and the reaction takes place almost entirely in the benzene pseudophase, at every AOT and PIP concentration. At W0 = 10, a slight increment of the reaction rate was observed at low [PIP] with AOT concentration, probably due to the increase of micropolarity of the medium. However, at [PIP] > or = 0.07 M the reaction rates are always higher in pure benzene than in the micellar medium because the catalytic effect of the amine predominates in the organic solvent. In the BHDC system the reaction is faster in the micellar medium than in the pure solvent. Increasing the BHDC concentration accelerates the overall reaction, and the saturation of the micellar interface is never reached. In addition, the reaction is not base-catalyzed in this micellar medium. Thus, despite the partition of the reactants in both pseudophases the reactions effectively take place at the interface of the aggregates. The kinetic behavior can be quantitatively explained taking into account the distribution of the substrate and the nucleophile between the bulk solvent and the micelle interface. The results were used to evaluate the amine distribution constant between the micellar pseudophase and organic solvent and the second-order rate coefficient of S(N)Ar reaction in the interface. A mechanism to rationalize the kinetic results in both interfaces is proposed.  相似文献   

10.
Park LC  Maruyama T  Goto M 《The Analyst》2003,128(2):161-165
DNA hybridization was investigated in AOT (sodium di-2-ethylhexyl sulfosuccinate)/isooctane reverse micelles. The single-stranded DNA molecules were encapsulated in the nanoscale water pools formed in the reverse micelles, reducing the hybridization rate. The DNA hybridization can be monitored by simply measuring the UV absorbance of the reverse micellar solution at 260 nm. We found that the DNA hybridization occurred only at the restricted water content (Wo = [H2O]/[AOT] = 20) and below room temperature. We applied this DNA hybridization behavior in reverse micelles to mutation detection in a model gene p53 and successfully detected the single nucleotide mutations in 20-mer. 30-mer and 50-mer nucleotides without a DNA labeling.  相似文献   

11.
The effect of compressed CO2 on the solubilization capacity of water in reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in longer chain n-alkanes was studied at different temperatures and pressures. It was found that the amount of solubilized water is increased considerably by CO2 in a suitable pressure range. The suitable CO2 pressure range in which the solubilization capacity of water could be enhanced decreased with increasing W0 (water-to-AOT molar ratio). The microenvironments in the CO2-stabilized reverse micelles were investigated by UV/Vis adsorption spectroscopy with methyl orange (MO) as probe. The mechanism by which the reverse micelles are stabilized by CO2 is discussed in detail. The main reason is likely to be that CO2 has a much smaller molecular volume than the n-alkane solvents studied in this work. Therefore, it can penetrate the interfacial film of the reverse micelles and stabilize them by increasing the rigidity of the micellar interface and thus reducing the attractive interaction between the droplets. However, if the CO2 pressure is too high, the solvent strength of the solvents is reduced markedly, and this induces phase separation in the micellar solution.  相似文献   

12.
Solubilization and conductivity studies are carried out with AOT/Brijs (Brij-30, Brij-35, Brij-52, Brij-56, Brij-58, Brij-72, Brij-76, Brij-78)/isooctane/water mixed reverse micellar systems. Replacement of AOT molecules with large head group Brij molecules (Brij-30, Brij-35, Brij-56, Brij-58, Brij-76, Brij-78) decreases the solubilization capacity, whereas those with smaller polar head groups (Brij-52 and Brij-72) increases it. The former blends assist the conductance percolation whereas the latter retard it. An attempt has been taken to obtain more insight on the interfacial composition of the mixed interface with the help of spectrophotometric studies using 7-hydroxycoumarin as the fluorophore. The results obtained from the solubilization and conductometric studies have been correlated with those obtained from the spectroscopic studies.  相似文献   

13.
The kinetics of hydrolysis of 2-naphthyl acetate (2-NA) catalyzed by alpha-chymotrypsin (alpha-CT), in reverse micellar solutions formed by glycerol (GY)-water (38% v/v) mixture/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane has been determined by spectroscopic measurements. To compare the efficiency of this reaction with that observed in micelles with water in the core, as well as in the corresponding homogeneous media, the reaction was also studied in water/AOT/n-heptane reverse micellar solutions and in both homogeneous media (water and GY-water, 38% v/v mixture). In every media, alpha-CT was characterized by the absorption and emission spectra, the fluorescence lifetimes, and the fluorescence anisotropy of its tryptophan residues. The effect of AOT concentration on the kinetic parameters obtained in the micellar systems was determined, at a constant molar ratio of the inner polar solvent and surfactant. Moreover, the data obtained allowed the evaluation of the 2-NA partition constant between the organic and the micellar pseudophase. It is shown that the addition of GY to the micelle interior results in an increase in the catalytic properties of alpha-CT. The fluorescence anisotropy studies in the different media show that the addition of GY increases the viscosity as compared with the aqueous systems. It seems that the GY addition to the reverse micellar aggregates results in a decrease of the conformational mobility of alpha-CT, which leads to an increase of the enzyme stability and activity.  相似文献   

14.
Photoinduced intramolecular charge transfer (ICT) of p-N,N-dimethylaminobenzoic acid (DMABOA) in AOT/cyclohexane/H2O reverse micelle was investigated and compared with that in CTAB/1-heptanol/H2O reverse micelle. It is proposed that the DMABOA molecule exists at the AOT reverse micelle water pool interface with its carboxylic group heading toward the water pool while the dimethylaminophenyl moiety buried in the micellar phase. Dual fluorescence of DMABOA that is indicative of the ICT reaction in the excited state was observed over the investigated water pool size, W of 3-17, in the AOT reverse micelle. The ICT emission of DMABOA in the AOT reverse micelle-water pool interface was found to be much weaker than that in the CTAB reverse micelle-water pool interface, and was attributed to the parallel direction of the electric field at the AOT reverse micelle-water pool interface to the charge transfer.  相似文献   

15.
Shape, size, and internal structure of nonionic reverse micelle in styrene depending on surfactant chain length, concentration, temperature, and water addition have been investigated using a small-angle X-ray scattering (SAXS) technique. The generalized indirect Fourier transformation (GIFT) method has been employed to deduce real-space structural information. The consistency of the GIFT method has been tested by the geometrical model fittings, and the micellar aggregation number (N(agg)) has been determined. It was found that diglycerol monocaprate (C(10)G(2)), diglycerol monolaurate (C(12)G(2)), and diglycerol monomyristate (C(14)G(2)), spontaneously self-assemble into reverse micelles in organic solvent styrene under ambient conditions. The micellar size and the N(agg) decrease with an increase in surfactant chain length, a scenario that could be understood from the modification of the critical packing parameter (cpp). A clear picture of one-dimensional (1-D) micellar growth was observed with an increase in surfactant weight fraction (W(s)) in the C(10)G(2) system, which eventually formed rodlike micelles at W(s) ≥ 15%. On the other hand, micelles shrunk favoring a rod-to-sphere type transition upon heating. Reverse micelles swelled with water, forming a water pool at the micellar core; the size of water-incorporated reverse micelles was much bigger than that of the empty micelles. Model fittings showed that water addition not only increase the micellar size but also increase the N(agg). Zero-shear viscosity was found to decrease with surfactant chain but increase with W(s), supporting the results derived from SAXS.  相似文献   

16.
The distribution of different aliphatic and aromatic amines: n-butylamine (n-BA), isobutylamine (i-BA), tert-butylamine (t-BA), piperidine (PIP), N,N-dimethylaniline (DMA) and N-methylaniline (MA) in water/sodium 1,4-bis(2-ethylhexyl)sulfosuccinate(AOT)/n-hexane reverse micelles was investigated by steady-state fluorescence measurements. The partition constants were measured by an indirect method based on the effect that amine partitioning exert on the bimolecular rate of the reaction between a microphase incorporated fluorophore (Ru(bpy)2+(3)) and the quencher, (Fe(CN)3-(6)). For MA, that can act as a quencher of the fluorophore a direct method was used. The results show that primary amines have larger partition constants than the secondary ones. For tertiary amines the distribution constants were practically negligible. Laser flash photolysis experiments confirmed that tertiary amines, both aliphatic and aromatic, are not incorporated to the micellar pseudophase. The effect of the amine structure on the partition constant was analyzed through linear solvation free energy relationships (LSER) using solute parameters and compared with those obtained for alcohols. Hydrogen bond interactions with the AOT polar heads appear to be the main driving force for the distribution of amines between the organic and micellar pseudophases, whereas the size of the alkyl or aromatic group tends to hinder it.  相似文献   

17.
Horseradish peroxidase (HRP) in cationic water-in-oil (W/O) microemulsions has always been ignored in reverse micellar enzymology, mainly because cationic surfactants are inhibitors of enzyme peroxidase. In the present study, for the first time, we have successfully introduced the cationic W/O microemulsion as an attractive host for efficient HRP activity. To this notion, much improved activity of HRP was observed in the W/O microemulsion of cetyltrimethylammonium bromide (CTAB) with an increase in n-hexanol concentration and W0 ([water]/[surfactant]), presumably due to the increased interfacial area of the microemulsions. In support of our above observation, six surfactants were synthesized with an increased headgroup size where the methyl groups of CTAB were subsequently replaced by the n-propyl and 2-hydroxyethyl groups, respectively, to prepare mono-, di-, and tripropylated/hydroxyethylated n-hexadecylammonium bromide. The peroxidase activity enhanced with headgroup size and also followed an overall trend similar to that found in the case of CTAB. Possibly, the reduced positive charge density at the augmented interfacial area by means of increase, either in headgroup size, cosurfactant concentration, and/or W0, is not capable of inactivating HRP. Also, the larger space at the interface may facilitate easier solubilization of the enzyme and increase the local concentration of enzyme and substrate, leading to the higher activity of HRP. The best activity was obtained with surfactant N-hexadecyl-N,N,N-tripropylammonium bromide, the highest ever found in any cationic W/O microemulsions, being almost 3 times higher than that found in water. Strikingly, this observed highest activity is comparable with that observed in an anionic bis(2-ethylhexyl)sulfosuccinate sodium salt (AOT)-based system, the best W/O microemulsions used for HRP.  相似文献   

18.
The behavior of a cyanine dye (3,3′-di-(gamma-sulfopropyl)-4,5,4′,5′-dibenzo-9-ethylthiacarbocyanine betaine pyridinium salt) was studied in AOT/water/hexane reverse micelles over a wide range of W at various concentrations of the dye, AOT, and reverse micelles. The processes occurring during the formation of the AOT/water/hexane micellar solution were studied in detail. It has been shown that, before the formation of the stable microemulsion, the dye aggregation processes occur by virtue of the interaction of the dye with the AOT anion. The amount of J-aggregates is proportional to the logarithm of the ratio of the amount of AOT molecules to the amount of dye molecules. The time behavior of J-aggregates after the formation of a micellar structure depends on the concentration of reverse micelles, thereby indicating an important role of intermicellar exchange.  相似文献   

19.
反胶束是两亲分子在非极性溶剂中形成的一种有序组合体,在医药、化工、采油、胶束催化及酶催化等领域中有重要应用.与胶束溶液相比,人们对反胶束的形成与结构的了解至今仍不充分.特别是对于由混合表面活性剂形成的反胶束的研究几乎无人涉及.本文采用动态光散射、电导及荧光光谱等手段对阴离子表面活性剂AOT与非离子表面活性剂形成的混合反胶束进行了研究,旨在探讨利用表面活性剂的复配来调节和控制反胶束的结构和性能.亚实验部分二异辛基磺化琉璃酸钠(AOT,Sigma公司);Brij30为含4个氧乙烯基(EO基)的十二碳醇(AcrosOrgani…  相似文献   

20.
The activity and stability of Chromobacterium viscosum lipase (glycerolester hydrolase, EC 3.1.1.3)-catalyzed olive oil hydrolysis in sodium bis (2-ethyl-1-hexyl)sulfosuccinate (AOT)/isooctane reverse micelles is increased appreciably when low molecular weight polyethylene glycol (PEG 400) is added to the reverse micelles. To understand the effect of PEG 400 on the phase behavior of the reverse micellar system, the phase diagram of AOT/PEG 400/water/isooctane system was studied. The influences of relevant parameters on the catalytic activity in AOT/PEG 400 reverse micelles were investigated and compared with the results in the simple AOT reverse micelles. In the presence of PEG 400, the linear decreasing trend of the lipase activity with AOT concentration, which is observed in the simple AOT reverse micelles, disappeared. Enzyme entrapped in AOT/PEG reverse micelles was very stable, retaining>75% of its initial activity after 60 d, whereas the half-life in simple AOT reverse micelles was 38 d. The kinetics parameter maximum velocity (V max)exhibiting the temperature dependence and the activation energy obtained by Arrhenius plot was suppressed significantly by the addition of PEG 400.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号