首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient and controlled means to achieve a rare cine substitution of arenes is reported. The methodology relies on the strategic use of aryl O-carbamates as readily removable directing groups for arene functionalization. The removal of aryl carbamates is achieved by employing an air-stable Ni(II) precatalyst, along with an inexpensive reducing agent, to give synthetically useful yields across a range of substrates. The net cine substitution process offers a new strategy for analogue synthesis, which complements the well-established logic for achieving arene functionalization by ipso substitution.  相似文献   

2.
The combination of precision-controlled weight loss measurements and spectroscopic surface FT-IR analysis allowed us to identify unique behaviors of poly(methyl methacrylate) (p-MMA). When MMA and n-butyl acrylate (nBA) are polymerized into p-MMA and p-nBA homopolymer blends, MMA/nBA random copolymers, and p-MMA/p-nBA core-shell morphologies, a controlled mobility and stratification of low molecular weight components occurs in films formed from coalesced colloidal dispersions. Due to different affinities toward water, p-MMA and p-nBA are capable of releasing water at different rates, depending upon particle morphological features of initial dispersions. As coalescence progresses, water molecules are released from the high free volume p-nBA particles, whereas p-MMA retains water molecules for the longest time due to its hydrophilic nature. As a result, water losses at extended coalescence times are relatively small for p-MMA. MMA/nBA copolymer and p-MMA/p-nBA blends follow the same trends, although the magnitudes of changes are not as pronounced. The p-MMA/p-nBA core-shell behavior resembles that of p-nBA homopolymer, which is attributed to significantly lower content of the p-MMA component in particles. Annealing of coalesced colloidal films at elevated temperatures causes migration of SDOSS to the F-A interface, but for films containing primarily p-nBA, reverse diffusion back into the bulk is observed. These studies illustrate that the combination of different particle morphologies and temperatures leads to controllable permeation processes through polymeric films.  相似文献   

3.
Polyaniline could be easily converted into nitrosated polyaniline by reaction with nitrite ion in acids. The product is soluble in common solvents and could be deposited into thin films. The nitrosated polyaniline could be back-converted into polyaniline by acid hydrolysis. On the basis of those properties, a simple chemical lithographic process to produce conductive polyaniline images is demonstrated.  相似文献   

4.
The surface morphology of thin molecularly imprinted polymer films has been studied using atomic force microscopy (AFM). The films were produced by spin coating onto glass substrates and examined as a function of host polymer, imprinting template, casting solvent, spin‐coater rotation speed and post‐production treatment. It was observed that the gross features of such films are template controlled. The fine structure is determined by parameters such as solvent, spin speed or subsequent treatment. The relationship between these observations, polymer–template interactions and the mechanism of film formation in spin coating is discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Polymerfilmformationfromeitherlatexorsolutionisquiteaninterestingbutcomplicatedsubjectdealingwithdiffusion,interpenetrationandcoagulationofpolymerchains,andespeciallycorrelatedtothepropertiesofthefinallyformedfilm.Manystudies[1—3]havebeencarriedoutonlat…  相似文献   

6.
Diverse opportunities: A Rhodium(III)-catalyzed ortho-selective olefination of arenes using a novel triazene as a directing group is reported. This method exhibits substantial post-functionalization synthetic versatility, overcoming a vital limitation in C?sp?2-H activation/functionalization products: restricted structural diversity.  相似文献   

7.
High dielectric constant is highly desirable in capacitors and memory devices. In this work, oleic acid (OA)‐capped BaTiO3 nanocrystals were synthesized by a two‐phase approach. Polyimide (PI)/BaTiO3‐nanocrystal composite thin films with high dielectric constant have been successfully fabricated. The morphologies and dielectric properties of the hybrid films were exploited. The results showed that BaTiO3 nanocrystals can be uniformly dispersed in the PI thin films owing to the surface modification of OA‐capped BaTiO3 nanocrystals. It was found that the dielectric constant of composite film varies with the volume fraction of BaTiO3 nanocrystals and sintering temperatures and reaches a maximum value of 44.1, which is around 13 times higher than that of pristine PI thin film (3.2). These results demonstrated that PI/BaTiO3‐nanocrystal composite films have considerable application potential in microelectronic fields.  相似文献   

8.
9.
It is shown that the addition, over suitable concentration ranges, of mixtures of (nonadsorbing) sodium poly(styrene sulfonate) and potassium chloride, to dispersions of silica particles in water, can lead to very large changes in the sediment height of the resulting aggregates, reflecting similarly large changes in particle packing density within the aggregates. It can also lead to aggregation rates which are considerably faster than the diffusion-controlled rates (by as much as a factor of 2.5), although this enhancement is reduced as the dispersion particle concentration is reduced.  相似文献   

10.
Compared to regular conjugated polymers,the random conjugated terpolymers are usually not beneficial to achieve highly efficient non-fullerene (NF)-based polyme...  相似文献   

11.
The production of graphene with open band gaps for the manufacturing of graphene-based electronic and optical devices requires synthesis methods to either control the number of layers to enrich AB-stacked bilayer or trilayer graphene or control the extent of functionalization of monolayer graphene. Solution-phase dispersion of graphene is promising for both methods to create printable electronics and nanocomposites. However, both methods face common challenges, including controlling the surface morphology, reducing the turbostratic layering, and enhancing the dispersion stability. To address these challenges at the molecular level, we successfully combined molecular simulations, theoretical modeling, and experimental measurements. First, we probed the surface structure and electrostatic potential of monolayer graphene dispersed in a sodium cholate (SC) surfactant aqueous solution, which exhibits 2D sheets partially covered with a monolayer of negatively charged cholate ions. Similar to the case of carbon nanotube functionalization, one may regulate the binding affinity of charged reactants for graphene functionalization by manipulating the surface morphology. Subsequently, we quantified the interactions between two graphene-surfactant assemblies by calculating the potential of mean force (PMF) between two surfactant-covered graphene sheets, which confirmed the existence of a metastable bilayer graphene structure due to the steric hindrance of the confined surfactant molecules. The traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was found to be adequate to explain the long-range electrostatic repulsions between the ionic surfactant-covered graphene sheets but was unable to account for the dominant, short-range steric hindrance imparted by the confined surfactant molecules. Interestingly, one faces a dilemma when using surfactants to disperse and stabilize graphene in aqueous solution: on the one hand, surfactants can stabilize graphene aqueous dispersions, but on the other hand, they prevent the formation of new AB-stacked bilayer and trilayer graphene resulting from the reaggregation process. Finally, the lifetime and time-dependent distribution of various graphene layer types were predicted using a kinetic model of colloid aggregation, and each graphene layer type was further decomposed into subtypes, including the AB-stacked species and various turbostratic species. The kinetic model of colloid aggregation developed here can serve as a useful tool to evaluate the quality of graphene dispersions for subsequent substrate-transferring or functionalization processes.  相似文献   

12.
The cyclohexane solution of PS (polystyrene) and the ethyl acetate solution of PMMA (polymethyl methacrylate) were used as flowing liquid; the ZnO/polymer hybrid colloids were successively produced by focused pulsed laser ablation of ZnO target in interface of solid and flowing liquid. As solvent in the hybrid colloids has volatized, the ZnO/polymer hybrid films were obtained. The hybrid colloids were characterized by high-resolution transmission electron microscopy (HRTEM) and select-area electron diffraction (SEAD). The results show a good dispersion of the ZnO nanoparticles in the polymer matrix. The hybrid films were characterized by fluorescence spectrum, Fourier transform infrared spectroscopy (FTIR) spectroscopy, thermogravimetry with FTIR (TG/FTIR), and X-ray photoelectron spectrum. The results show the ZnO/polymer hybrid films can radiate strong blue light under ultraviolet. Meanwhile, the ZnO/polymer hybrid films have higher chemical stability than ZnO nanoparticles because nano-ZnO nanoparticles were enwrapped by polymers. In addition, the ZnO hybrid films have higher thermal stability then the related pure polymers because of strong interaction among ZnO nanoparticles and polymers.  相似文献   

13.
Ag nanowires and nanoparticles have been formed on hybrid λ-DNA/conducting polymer templates. The strong, but non-covalent, interaction of the conducting polymer with the double helix allowed us to incorporate chemical functionalities (alkynyl) into the DNA/conducting polymer strands by synthesis of functional monomers. Oxidative polymerisation of alkynyl-thienylpyrrole in the presence of λ-DNA produced conductive nanowires bearing alkyne groups; we show, using a combination of AFM, cAFM and EFM phase measurements that the alkyne functionality strong influences the subsequent templating reaction of Tollens’ reagent to produce uniform conductive nanowires comprised of many connected Ag clusters.  相似文献   

14.
Need some direction? Silanol was developed as a directing group for the Pd(II)-catalyzed oxidative Heck-type reaction of arenes. A one-pot C-H activation/desilylation process of benzyldiisopropylsilanol was also demonstrated, providing a powerful approach for the synthesis of ortho-alkenyl-substituted alkylarenes. Considering the easily attachable and readily removable properties of the silanol group, this reaction will find broad synthetic applications.  相似文献   

15.
A poly(o-methoxyaniline) (POMA)/DNA [weight fraction of DNA (W(DNA)) = 0.45] hybrid was prepared by mixing their solutions in sterilized double distilled water. The solution turned green upon aging for a longer time, and the doping of POMA by DNA was complete after about 15 d of aging. The doping was confirmed from the UV-vis spectra where the 599 nm peak of POMA(EB) disappeared and a new peak for a pi to localized polaron band-transition appeared. With increasing aging time the new peak gradually shifted from 674 nm at 3 h to 820 nm at 15 d of mixing and thereafter it remained constant. The absence of a free carrier tail in the UV-vis spectra indicated a coiled structure of POMA in the complex. Circular dichroism spectra of the hybrid solution indicated that the DNA conformation (double helical structure) remained unchanged in the hybrid. The SEM micrograph of the freeze-dried hybrid showed a needle-like morphology of the DNA dispersed in a polymer matrix and it was completely different from the fibrillar network morphology of pure DNA in the solid state. The TEM micrograph indicated a homogeneous dispersion of DNA fibrils in the POMA matrix. The melting temperature of the POMA-DNA hybrid showed an increase compared to that of pure DNA by 5 degrees C, probably caused by an electrostatic interaction between the DNA anion and the POMA radical cation generated in the doping process. WAXS investigations revealed that the DNA crystal structure remained unchanged in the hybrid whereas the POMA crystal structure might be lost. An FT-IR study suggested that interaction occurred between the phosphoric acid group of DNA and a nitrogen atom of POMA through proton transfer from the OH group of the former. A schematic model of the POMA-DNA complex randomly anchoring POMA chains with the DNA molecule was proposed. The dc conductivity of the POMA-DNA complex was found to be ca. 10(-7) S . cm(-1). Hence, this work describes a procedure for making a DNA-conducting polymer hybrid without changing the conformation and structure of DNA. [Diagram: see text]  相似文献   

16.
This paper considers the feasibility of replacing indium tin oxide (ITO) with spin-coated, polymer-based composite films that are filled with multiwalled carbon nanotubes (MWNTs). The coating mixture consists of a solvent with low volatility, a dissolved thermoplastic polymer, and MWNTs. The high aspect ratio of MWNTs and their good electrical conductivity enable electrical percolation at very low concentrations, so that films can be prepared that conduct electricity while retaining good optical transparency. Although the MWNTs are driven to aggregate by Van der Waals interactions, the high viscosity of the polymer/solvent solution enables the preparation of metastable, homogeneous dispersions. However, exposing the mixtures to shear leads to aggregation, the magnitude of which depends on the duration of the shear. This effect could be observed directly in spin-coated films using both optical microscopy and conductivity measurements, with aggregation causing a drop in conductivity at high nanotube loading, and more complex non-monotonic behavior at concentrations approaching the percolation threshold.  相似文献   

17.
The novel title silver(I) coordination polymer, catena‐poly­[[aceto­nitrile­silver(I)]‐di‐μ‐4‐[N‐(di­phenyl­phosphino)­amino­meth­yl]­pyridine‐κ2N1:P2P:N1‐[aceto­nitrile­silver(I)]‐μ3‐4‐[N,N‐bis­(di­phenyl­phosphino)­amino­methyl]­pyridine‐κ3N1:P:P′‐bis­[aceto­nitrile­silver(I)(Ag—Ag)]‐μ3‐4‐[N,N‐bis­(di­phenyl­phosphino)­amino­methyl]­pyridine‐κ3P:P′:N1] tetra­kis­(tetra­fluoro­borate) aceto­nitrile trisolvate], {[Ag4(C2H3N)4(C18H17N2P)2(C30H26N2P2)2](BF4)4·3C2H3N}n, is formed by the self‐assembly of the Ph2P(4‐NHCH2C5H4N) and (Ph2P)2(4‐NCH2C5H4N) ligands with silver tetra­fluoro­borate. The polymer consists of alternating rings (which lie about inversion centers) bridged by the pyridyl rings of the bis‐phosphine‐substituted ligands, with anions hydrogen bonded the length of the chain. Two distinctly different metal coordination environments exist in the polymer, viz. distorted tetrahedral and trigonal geometries.  相似文献   

18.
The Ar‐ions intermittent‐etching technique was successfully incorporated during the deposition of glow discharge polymer (GDP) films. The ionic components and ion energy distributions (IEDs) of C4H8/H2 and C4H8/H2/Ar plasma were diagnosed by an energy‐resolved mass spectrometer, respectively. The Fourier transform infrared spectroscopy, scanning electron microscope, and white‐light interferometer were used to studying the chemical structure, surface morphology, and roughness of the GDP films, which are deposited with the various time of Ar‐ions intermittent etching. With the introduction of Ar into the chamber, the intensity of the C H absorption peaks becomes weak and the large‐mass C H species were ionized and dissociated from the mass spectrometer results. The surface roughness of GDP films are decreased with Ar‐ions intermittent etching, the lowest surface roughness (Rq) is only 33.6 nm when the intermittent cycle is 60 minutes/15 minutes. The highest sp3CH3 (sym) absorption peaks are attributed to samples also with 60‐minute/15‐minute intermittent cycle, which shortens the length of the carbon chain and reduces the probability of the cluster formations.  相似文献   

19.
The effect of Xe+ bombardment on the surface morphology of four different polymers, polystyrene (PS), poly(phenylene oxide), polyisobutylene, and polydimethylsiloxane, was investigated in ion energy and fluence ranges of interest for secondary ion mass spectrometry depth‐profiling analysis. Atomic force microscopy (AFM) was applied to analyze the surface topography of pristine and irradiated polymers. AFM analyses of nonirradiated polymer films showed a feature‐free surface with different smoothness. We studied the influence of different Xe+ beam parameters, including the incidence angle, ion energy (660–4000 eV), current density (0.5 × 102 to 8.7 × 102 nA/cm2), and ion fluence (4 × 1014 to 2 × 1017 ion/cm2). Xe+ bombardment of PS with 3–4 keV at a high current density did not induce any change in the surface morphology. Similarly, for ion irradiation with lower energy, no surface morphology change was found with a current density higher than 2.6 × 102 nA/cm2 and an ion fluence up to 4 × 1016 ion/cm2. However, Xe+ irradiation with a lower current density and a higher ion fluence led to topography development for all of the polymers. The roughness of the polymer surface increased, and well‐defined patterns appeared. The surface roughness increased with ion irradiation fluence and with the decrease of the current density. A pattern orientation along the beam direction was visible for inclined incidence between 15° and 45° with respect to the surface normal. Orientation was not seen at normal incidence. The surface topography development could be explained on the basis of the balance between surface damage and sputtering induced by the primary ion beam and redeposition–adsorption from the gas phase. Time‐of‐flight secondary ion mass spectrometry analyses of irradiated PS showed strong surface modifications of the molecular structure and the presence of new material. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 314–325, 2001  相似文献   

20.
The effects of preparation methods and monomer chemical structures on the microstructure, morphology, and properties of the hybrid films were studied. 7DBPA‐3S was synthesized by the sol–gel reaction of precondensed silica particles with alkoxysilane‐modified polymers DBPA. DBP‐POBG3T3 was prepared by the radiation curing of comb‐like UV curable alkoxysilanes POBG3T3 with UV curable polymer DBP, followed by the sol–gel reaction of alkoxysilanes. The DBP‐POBG3T3 film consisted of polymer matrix and large tethered aggregates with tiny silica connected by organic chains. On the contrary, silica nanoparticles were well‐dispersed in the 7DBPA‐3S hybrid film. The TEM, energy dispersive X‐ray Si‐mapping and P‐mapping images are good experimental approaches to characterize the texture of the tethered aggregates. The 7DBPA‐3S hybrid composite with well‐dispersed silica nanoparticles exhibited smoother surface, higher transparency, and better thermal stability than the DBP‐POBG3T3 composite did. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1152–1165, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号