首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Asymmetric Travelling Salesman Problem with Replenishment Arcs (RATSP) is a new class of problems arising from work related to aircraft routing. Given a digraph with cost on the arcs, a solution of the RATSP, like that of the Asymmetric Travelling Salesman Problem, induces a directed tour in the graph which minimises total cost. However the tour must satisfy additional constraints: the arc set is partitioned into replenishment arcs and ordinary arcs, each node has a non-negative weight associated with it, and the tour cannot accumulate more than some weight limit before a replenishment arc must be used. To enforce this requirement, constraints are needed. We refer to these as replenishment constraints.In this paper, we review previous polyhedral results for the RATSP and related problems, then prove that two classes of constraints developed in V. Mak and N. Boland [Polyhedral results and exact algorithms for the asymmetric travelling salesman problem with replenishment arcs, Technical Report TR M05/03, School of Information Technology, Deakin University, 2005] are, under appropriate conditions, facet-defining for the RATS polytope.  相似文献   

2.
The arc routing problem involves the total distance covered in traversing a certain number of arcs in a network. In the capacitated version of this problem of a finite capacity is associated with each vehicle. In this paper we introduce a new approximate solution strategy for the capacitated arc routing problem (CARP). This strategy usesd an insertion procedure to generate many routes in parallel. The purpose is to obtain a better balance between the costs of each route. Computational results are reported.  相似文献   

3.
There have been several attempts to solve the capacitated arc routing problem with m vehicles starting their tours from a central node. The objective has been to minimize the total distance travelled. In the problem treated here we also have the fixed costs of the vehicles included in the objective function. A set of vehicle capacities with their respective costs are used. Thus the objective function becomes a combination of fixed and variable costs. The solution procedure consists of four phases. In the first phase, a Chinese or rural postman problem is solved depending on whether all or some of the arcs in the network demand service with the objective of minimizing the total distance travelled. It results in a tour called the giant tour. In the second phase, the giant tour is partitioned into single vehicle subtours feasible with respect to the constraints. A new network is constructed with the node set corresponding to the arcs of the giant tour and with the arc set consisting of the subtours of the giant tour. The arc costs include both the fixed and variable costs of the subtours. The third phase consists of solving the shortest path problem on this new network to result in the least cost set of subtours represented on the new network. In the last phase a postprocessor is applied to the solution to improve it. The procedure is repeated for different giant tours to improve the final solution. The problem is extended to the case where there can be upper bounds on the number of vehicles with given capacities using a branch and bound method. Extension to directed networks is given. Some computational results are reported.  相似文献   

4.
When vehicle routing problems with additional constraints, such as capacity or time windows, are solved via column generation and branch-and-price, it is common that the pricing subproblem requires the computation of a minimum cost constrained path on a graph with costs on the arcs and prizes on the vertices. A common solution technique for this problem is dynamic programming. In this paper we illustrate how the basic dynamic programming algorithm can be improved by bounded bi-directional search and we experimentally evaluate the effectiveness of the enhancement proposed. We consider as benchmark problems the elementary shortest path problems arising as pricing subproblems in branch-and-price algorithms for the capacitated vehicle routing problem, the vehicle routing problem with distribution and collection and the capacitated vehicle routing problem with time windows.  相似文献   

5.
In this paper we introduce an extension of the well known Rural Postman Problem, which combines arc routing with profits and facility location. Profitable arcs must be selected, facilities located at both end-points of the selected arcs, and a tour identified so as to maximize the difference between the profit collected along the arcs and the cost of traversing the arcs and installing the facilities. We analyze properties of the problem, present a mathematical programming formulation and a branch-and-cut algorithm. In an extensive computational experience the algorithm could solve instances with up to 140 vertices and 190 arcs and up to 50 vertices and 203 arcs.  相似文献   

6.
In several arc routing problems, it is necessary to take turn penalties into account when designing a solution. Traditionally, this is done through a transformation of the arc routing problem into an equivalent vertex routing problem. In this paper it is shown that a more direct approach, not resorting to such a transformation, may be more efficient.  相似文献   

7.
The class of vehicle routing problems involves the optimization of freight or passenger transportation activities. These problems are generally treated via the representation of the road network as a weighted complete graph. Each arc of the graph represents the shortest route for a possible origin–destination connection. Several attributes can be defined for one arc (travel time, travel cost, etc.), but the shortest route modeled by this arc is computed according to a single criterion, generally travel time. Consequently, some alternative routes proposing a different compromise between the attributes of the arcs are discarded from the solution space. We propose to consider these alternative routes and to evaluate their impact on solution algorithms and solution values through a multigraph representation of the road network. We point out the difficulties brought by this representation for general vehicle routing problems, which drives us to introduce the so-called fixed sequence arc selection problem (FSASP). We propose a dynamic programming solution method for this problem. In the context of an on-demand transportation (ODT) problem, we then propose a simple insertion algorithm based on iterative FSASP solving and a branch-and-price exact method. Computational experiments on modified instances from the literature and on realistic data issued from an ODT system in the French Doubs Central area underline the cost savings brought by the proposed methods using the multigraph model.  相似文献   

8.
Comparison of Algorithms for the Degree Constrained Minimum Spanning Tree   总被引:4,自引:0,他引:4  
The Degree Constrained Minimum Spanning Tree (DCMST) on a graph is the problem of generating a minimum spanning tree with constraints on the number of arcs that can be incident to vertices of the graph. In this paper we develop three heuristics for the DCMST, including simulated annealing, a genetic algorithm and a method based on problem space search. We propose alternative tree representations to facilitate the neighbourhood searches for the genetic algorithm. The tree representation that we use for the genetic algorithm can be generalised to other tree optimisation problems as well. We compare the computational performance of all of these approaches against the performance of an exact solution approach in the literature. In addition, we also develop a new exact solution approach based on the combinatorial structure of the problem. We test all of these approaches using standard problems taken from the literature and some new test problems that we generate.  相似文献   

9.
Hybrid metaheuristics for the profitable arc tour problem   总被引:1,自引:0,他引:1  
The profitable arc tour problem is a variant in the vehicle routing problems. It is included in the family of the vehicle routing with profit problems in which a set of vehicle tours are constructed. The objective is to find a set of cycles in the vehicle tours that maximize the collection of profits minus travel costs, subject to constraints limiting the length of cycles that profit is available on arcs. To solve this variant we adopted two metaheuristics based on adaptive memory. We show that our algorithms provide good results in terms of solution quality and running times.  相似文献   

10.
The Stochastic Eulerian Tour Problem (SETP) seeks the Eulerian tour of minimum expected length on an undirected Eulerian graph, when demand on the arcs that have to be serviced is probabilistic. The SETP is NP-hard and in this paper, we develop three constructive heuristics for this problem. The first two are greedy tour construction heuristics while the third is a sub-tour concatenation heuristic. Our experimental results show that for grid networks, the sub-tour concatenation heuristic performs well when the probability of service of each edge is greater than 0.1. For Euclidean networks, as the number of edges increases, the second heuristic performs the best among the three. Also, the expected length of our overall best solution is lower than the expected length of a random tour by up to 10% on average for grid networks and up to 2% for Euclidean networks.  相似文献   

11.
In this paper, we develop a tabu search procedure for solving the uniform graph partitioning problem. Tabu search, an abstract heuristic search method, has been shown to have promise in solving several NP-hard problems, such as job shop and flow shop scheduling, vehicle routing, quadratic assignment, and maximum satisfiability. We compare tabu search to other heuristic procedures for graph partitioning, and demonstrate that tabu search is superior to other solution approaches for the uniform graph partitioning problem both with respect to solution quality and computational requirements.  相似文献   

12.
Placement algorithms for VLSI layout tend to stick the building blocks together. This results in the need to increase the space between adjacent blocks to allow the routing of interconnecting wires. The above problem is called the block spacing problem. This paper presents a model for spreading the blocks uniformly over the chip area, to accommodate the routing requirements, such that the desired adjacency relations between the blocks are retained. The block spacing problem is solved via a graph model, whose vertices represent the building blocks, and its arcs represent the space between adjacent blocks. Then, the desired uniform spacing can be presented as a space balancing problem. In this paper the existence and uniqueness of a solution to the one dimensional space balancing problem are proved, and an iterative algorithm which converges rapidly to the solution is presented. It is shown that in general, the two dimensional problem may have no solution.  相似文献   

13.
Metaheuristic algorithms, such as simulated annealing and tabu search, are popular solution techniques for vehicle routing problems (VRPs). These approaches rely on iterative improvements to a starting solution, involving slight alterations to the routes (ie, neighbourhood moves), moving a node to a different part of a solution, swapping nodes or inverting sections of a tour, for example. When working with standard VRPs, where the costs of the arcs do not vary with advancing time, evaluating changes to the total cost following a neighbourhood move is a simple process: simply subtract the cost of the links removed from the solution and add the costs for the new links. When a time-varying aspect (eg, congestion) is included in the costs, these calculations become estimations rather than exact values. This paper focuses on a single vehicle routing problem, similar to the Travelling Salesman Problem, and investigates the potential for using estimation methods on simple models with time-variant costs, mimicking the effects of road congestion.  相似文献   

14.
We address the problem of assigning probabilities at discrete time instants for routing toll-free calls to a given set of call centers to minimize a weighted sum of transmission costs and load variability at the call centers during the next time interval.We model the problem as a tripartite graph and decompose the finding of an optimal probability assignment in the graph into the following problems: (i) estimating the true arrival rates at the nodes for the last time period; (ii) computing routing probabilities assuming that the estimates are correct. We use a simple approach for arrival rate estimation and solve the routing probability assignment by formulating it as a convex quadratic program and using the affine scaling algorithm to obtain an optimal solution.We further address a practical variant of the problem that involves changing routing probabilities associated with k nodes in the graph, where k is a prespecified number, to minimize the objective function. This involves deciding which k nodes to select for changing probabilities and determining the optimal value of the probabilities. We solve this problem using a heuristic that ranks all subsets of k nodes using gradient information around a given probability assignment.The routing model and the heuristic are evaluated for speed of computation of optimal probabilities and load balancing performance using a Monte Carlo simulation. Empirical results for load balancing are presented for a tripartite graph with 99 nodes and 17 call center gates.  相似文献   

15.
In this paper, we present a direct approach for routing a shortest rectilinear path between two points among a set of rectilinear obstacles in a two-layer interconnection model that is used for VLSI routing applications. The previously best known direct approach for this problem takes O(nlog2n) time and O(nlogn) space, where n is the total number of obstacle edges. By using integer data structures and an implicit graph representation scheme (i.e., a generalization of the distance table method), we improve the time bound to O(nlog3/2n) while still maintaining the O(nlogn) space bound. Comparing with the indirect approach for this problem, our algorithm is simpler to implement and is probably faster for a quite large range of input sizes.  相似文献   

16.
The mixed postman problem consists of finding a minimum cost tour of a connected mixed graph traversing all its vertices, edges, and arcs at least once. We consider the variant of the mixed postman problem where all edges must be traversed exactly once. The feasibility version of this problem is NP-complete. We introduce an infinite class of necessary conditions for feasibility, which we conjecture are also sufficient. We prove that no finite subset of these conditions is sufficient.  相似文献   

17.
《Discrete Mathematics》2007,307(3-5):633-640
A plane graph is dual-eulerian if it has an eulerian tour with the property that the same sequence of edges also forms an eulerian tour in the dual graph. Dual-eulerian graphs are of interest in the design of CMOS VLSI circuits.Every dual-eulerian plane graph also has an eulerian Petrie (left–right) tour thus we consider series-parallel extensions of plane graphs to graphs, which have eulerian Petrie tours. We reduce several special cases of extensions to the problem of finding hamiltonian cycles. In particular, a 2-connected plane graph G has a single series parallel extension to a graph with an eulerian Petrie tour if and only if its medial graph has a hamiltonian cycle.  相似文献   

18.
This paper considers a real world waste collection problem in which glass, metal, plastics, or paper is brought to certain waste collection points by the citizens of a certain region. The collection of this waste from the collection points is therefore a node routing problem. The waste is delivered to special sites, so called intermediate facilities (IF), that are typically not identical with the vehicle depot. Since most waste collection points need not be visited every day, a planning period of several days has to be considered. In this context three related planning problems are considered. First, the periodic vehicle routing problem with intermediate facilities (PVRP-IF) is considered and an exact problem formulation is proposed. A set of benchmark instances is developed and an efficient hybrid solution method based on variable neighborhood search and dynamic programming is presented. Second, in a real world application the PVRP-IF is modified by permitting the return of partly loaded vehicles to the depots and by considering capacity limits at the IF. An average improvement of 25% in the routing cost is obtained compared to the current solution. Finally, a different but related problem, the so called multi-depot vehicle routing problem with inter-depot routes (MDVRPI) is considered. In this problem class just a single day is considered and the depots can act as an intermediate facility only at the end of a tour. For this problem several instances and benchmark solutions are available. It is shown that the algorithm outperforms all previously published metaheuristics for this problem class and finds the best solutions for all available benchmark instances.  相似文献   

19.
In this paper, we propose an approach based on mathematical programming and local search to cope with the truck and trailer vehicle routing problem. The mathematical programming framework models two subproblems that are solved sequentially, that is, the customer-route assignment problem (CAP), with the objective of minimizing the fleet size used to service clients, and the route definition problem, with the objective of minimizing the total tour length given the set of clients assigned to each vehicle. Since the route assignment model can return infeasible solutions, the local search plays the role of possibly retrieving a feasible solution. The mathematical formulations and the local search work iteratively, embedded in a multiple restarting mechanism able to diversify solutions by (i) identifying additional constraints for the CAP formulation to be taken into account during the algorithm progress, (ii) using a tabu like customer-route matrix to avoid assignments already analysed in the previous iterations of the algorithm. Also a lower bound to assess the solution quality is given. Experiments and comparison with competing approaches suggest that the results of the proposed machinery are promising, producing, on average,a smaller total tour lengths on benchmarks.  相似文献   

20.
In the general routing problem, the aim is to determine a least cost traversal of a subset of edges, arcs and vertices of a graph. The problem can be transformed into an equivalent traveling salesman problem or rural postman problem and solved optimally. Computational results are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号