首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a Bayesian model for simultaneous linear quantile regression at several specified quantile levels. More specifically, we propose to model the conditional distributions by using random probability measures, known as quantile pyramids, introduced by Hjort and Walker. Unlike many existing approaches, this framework allows us to specify meaningful priors on the conditional distributions, while retaining the flexibility afforded by the nonparametric error distribution formulation. Simulation studies demonstrate the flexibility of the proposed approach in estimating diverse scenarios, generally outperforming other competitive methods. We also provide conditions for posterior consistency. The method is particularly promising for modeling the extremal quantiles. Applications to extreme value analysis and in higher dimensions are also explored through data examples. Supplemental material for this article is available online.  相似文献   

2.
The aim of this note is to investigate the relationship between strictly positive random fields on a lattice ? ν and the conditional probability measures at one point given the values on a finite subset of the lattice ? ν . We exhibit necessary and sufficient conditions for a one-point finite-conditional system to correspond to a unique strictly positive probability measure. It is noteworthy that the construction of the aforementioned probability measure is done explicitly by some simple procedure. Finally, we introduce a condition on the one-point finite conditional system that is sufficient for ensuring the mixing of the underlying random field.  相似文献   

3.

We demonstrate that, in a regression setting with a Hilbertian predictor, a response variable is more likely to be more highly correlated with the leading principal components of the predictor than with trailing ones. This is despite the extraction procedure being unsupervised. Our results are established under the conditional independence model, which includes linear regression and single-index models as special cases, with some assumptions on the regression vector. These results are a generalisation of earlier work which showed that this phenomenon holds for predictors which are real random vectors. A simulation study is used to quantify the phenomenon.

  相似文献   

4.
The ordinary least squares estimation is based on minimization of the squared distance of the response variable to its conditional mean given the predictor variable. We extend this method by including in the criterion function the distance of the squared response variable to its second conditional moment. It is shown that this “second-order” least squares estimator is asymptotically more efficient than the ordinary least squares estimator if the third moment of the random error is nonzero, and both estimators have the same asymptotic covariance matrix if the error distribution is symmetric. Simulation studies show that the variance reduction of the new estimator can be as high as 50% for sample sizes lower than 100. As a by-product, the joint asymptotic covariance matrix of the ordinary least squares estimators for the regression parameter and for the random error variance is also derived, which is only available in the literature for very special cases, e.g. that random error has a normal distribution. The results apply to both linear and nonlinear regression models, where the random error distributions are not necessarily known.  相似文献   

5.
We consider extremal problems for the time-harmonic Maxwell equations with mixed boundary conditions for the electric field. Namely, the tangential component of the electric field is given on one part of the boundary, and an impedance boundary condition is posed on the other part. We prove the solvability of the original mixed boundary value problem and the extremal problem. We obtain sufficient conditions on the input data ensuring the stability of solutions of specific extremal problems under certain perturbations of both the performance functional and some functions occurring in the boundary value problem.  相似文献   

6.
The best linear unbiased predictor (BLUP) is called a kriging predictor and has been widely used to interpolate a spatially correlated random process in scientific areas such as geostatistics. However, if an underlying random field is not Gaussian, the optimality of the BLUP in the mean squared error (MSE) sense is unclear because it is not always identical with the conditional expectation. Moreover, in many cases, data sets in spatial problems are often so large that a kriging predictor is impractically time-consuming. To reduce the computational complexity, covariance tapering has been developed for large spatial data sets. In this paper, we consider covariance tapering in a class of transformed Gaussian models for random fields and show that the BLUP using covariance tapering, the BLUP and the optimal predictor are asymptotically equivalent in the MSE sense if the underlying Gaussian random field has the Matérn covariance function.  相似文献   

7.
Nonparametric regression estimator based on locally weighted least squares fitting has been studied by Fan and Ruppert and Wand. The latter paper also studies, in the univariate case, nonparametric derivative estimators given by a locally weighted polynomial fitting. Compared with traditional kernel estimators, these estimators are often of simpler form and possess some better properties. In this paper, we develop current work on locally weighted regression and generalize locally weighted polynomial fitting to the estimation of partial derivatives in a multivariate regression context. Specifically, for both the regression and partial derivative estimators we prove joint asymptotic normality and derive explicit asymptotic expansions for their conditional bias and conditional convariance matrix (given observations of predictor variables) in each of the two important cases of local linear fit and local quadratic fit.  相似文献   

8.
Feldman  G. M. 《Potential Analysis》2022,56(2):297-315

According to the well-known Heyde theorem the Gaussian distribution on the real line is characterized by the symmetry of the conditional distribution of one linear form of independent random variables given the other. We study analogues of this theorem for some locally compact Abelian groups X containing an element of order 2. We prove that if X contains an element of order 2, this leads to the fact that a wide class of non-Gaussian distributions on X is characterized by the symmetry of the conditional distribution of one linear form of independent random variables given the other. While coefficients of linear forms are topological automorphisms of a group.

  相似文献   

9.
In modeling of an economic system, there may occur some stochastic constraints, that can cause some changes in the estimators and their respective behaviors. In this approach we formulate the simultaneous equation models into the problem of estimating the regression parameters of a multiple regression model, under elliptical errors. We define five different sorts of estimators for the vector-parameter. Their exact risk expressions are also derived under the balanced loss function. Comparisons are then made to clarify the performance of the proposed estimators. It is shown that the shrinkage factor of the Stein estimator is robust with respect to departures from normality assumption.  相似文献   

10.
In this paper we consider elliptical random vectors in Rd,d≥2 with stochastic representation RAU where R is a positive random radius independent of the random vector U which is uniformly distributed on the unit sphere of Rd and ARd×d is a non-singular matrix. When R has distribution function in the Weibull max-domain of attraction we say that the corresponding elliptical random vector is of Type III. For the bivariate set-up, Berman [Sojurns and Extremes of Stochastic Processes, Wadsworth & Brooks/ Cole, 1992] obtained for Type III elliptical random vectors an interesting asymptotic approximation by conditioning on one component. In this paper we extend Berman's result to Type III elliptical random vectors in Rd. Further, we derive an asymptotic approximation for the conditional distribution of such random vectors.  相似文献   

11.
In this article, we derive expressions for conditional expectations in terms of regular expectations without conditioning but involving some weights. For this purpose, we apply two approaches: the conditional density method and the Malliavin method. We use these expressions for the numerical estimation of the price of American options and their deltas in a Lévy and jump-diffusion setting. Several examples of applications to financial and energy markets are given including numerical examples.  相似文献   

12.
Orthant tail dependence of multivariate extreme value distributions   总被引:2,自引:0,他引:2  
The orthant tail dependence describes the relative deviation of upper- (or lower-) orthant tail probabilities of a random vector from similar orthant tail probabilities of a subset of its components, and can be used in the study of dependence among extreme values. Using the conditional approach, this paper examines the extremal dependence properties of multivariate extreme value distributions and their scale mixtures, and derives the explicit expressions of orthant tail dependence parameters for these distributions. Properties of the tail dependence parameters, including their relations with other extremal dependence measures used in the literature, are discussed. Various examples involving multivariate exponential, multivariate logistic distributions and copulas of Archimedean type are presented to illustrate the results.  相似文献   

13.
This paper is concerned with the conditional bias and variance of local quadratic regression to the multivariate predictor variables. Data sharpening methods of nonparametric regression were first proposed by Choi, Hall, Roussion. Recently, a data sharpening estimator of local linear regression was discussed by Naito and Yoshizaki. In this paper, to improve mainly the fitting precision, we extend their results on the asymptotic bias and variance. Using the data sharpening estimator of multivariate local quadratic regression, we are able to derive higher fitting precision. In particular, our approach is simple to implement, since it has an explicit form, and is convenient when analyzing the asymptotic conditional bias and variance of the estimator at the interior and boundary points of the support of the density function.  相似文献   

14.
15.
Conditional density estimation in a parametric regression setting, where the problem is to estimate a parametric density of the response given the predictor, is a classical and prominent topic in regression analysis. This article explores this problem in a nonparametric setting where no assumption about shape of an underlying conditional density is made. For the first time in the literature, it is proved that there exists a nonparametric data-driven estimator that matches performance of an oracle which: (i) knows the underlying conditional density, (ii) adapts to an unknown design of predictors, (iii) performs a dimension reduction if the response does not depend on the predictor, (iv) is minimax over a vast set of anisotropic bivariate function classes. All these results are established via an oracle inequality which is on par with ones known in the univariate density estimation literature. Further, the asymptotically optimal estimator is tested on an interesting actuarial example which explores a relationship between credit scoring and premium for basic auto-insurance for 54 undergraduate college students.  相似文献   

16.
Recently, quantiles and expectiles of a regression function have been investigated by several authors. In this work, we give a sufficient condition under which a quantile and an expectile coincide. We extend some classical results known for mean, median and symmetry to expectiles, quantiles and weighted-symmetry. We also study split-models and sample estimators of expectiles.Work supported by the Natural Science and Engineering Council of Canada and by the Université du Québec à Trois-Rivières.  相似文献   

17.
We consider ordinary and conditional first passage times in a general birth–death process. Under existence conditions, we derive closed-form expressions for the kth order moment of the defined random variables, k ≥ 1. We also give an explicit condition for a birth–death process to be ergodic degree 3. Based on the obtained results, we analyze some applications for Markovian queueing systems. In particular, we compute for some non-standard Markovian queues, the moments of the busy period duration, the busy cycle duration, and the state-dependent waiting time in queue.   相似文献   

18.
Consider a regression model in which the responses are subject to random right censoring. In this model, Beran studied the nonparametric estimation of the conditional cumulative hazard function and the corresponding cumulative distribution function. The main idea is to use smoothing in the covariates. Here we study asymptotic properties of the corresponding hazard function estimator obtained by convolution smoothing of Beran's cumulative hazard estimator. We establish asymptotic expressions for the bias and the variance of the estimator, which together with an asymptotic representation lead to a weak convergence result. Also, the uniform strong consistency of the estimator is obtained.  相似文献   

19.
Abstract

Spatial data in mining, hydrology, and pollution monitoring commonly have a substantial proportion of zeros. One way to model such data is to suppose that some pointwise transformation of the observations follows the law of a truncated Gaussian random field. This article considers Monte Carlo methods for prediction and inference problems based on this model. In particular, a method for computing the conditional distribution of the random field at an unobserved location, given the data, is described. These results are compared to those obtained by simple kriging and indicator cokriging. Simple kriging is shown to give highly misleading results about conditional distributions; indicator cokriging does quite a bit better but still can give answers that are substantially different from the conditional distributions. A slight modification of this basic technique is developed for calculating the likelihood function for such models, which provides a method for computing maximum likelihood estimates of unknown parameters and Bayesian predictive distributions for values of the process at unobserved locations.  相似文献   

20.
In this paper, we consider extremal problems for numerical positive series. The terms of these series are pairwise products of the elements of two sequences, one of which is fixed and the other varies within a given set of sequences. We obtain exact solutions for a number of such problems. As one of the possible applications of the results obtained, we find solutions of some extremal problems related to best n-term approximations of periodic functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号