首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Reaction of AgBF(4), KNH(2), K(2)Se, Se, and [2.2.2]-cryptand in acetonitrile yields [K([2.2.2]-cryptand)](4)[Ag(4)(Se(2)C(2)(CN)(2))(4)] (1). In the unit cell of 1 there are four [K([2.2.2]-cryptand)](+) units and a tetrahedral Ag(4) anionic core coordinated in mu(1)-Se, mu(2)-Se fashion by each of four mns ligands (mns = maleonitrilediselenolate, [Se(2)C(2)(CN)(2)](2)(-)). Reaction of AgNO(3), Na(2)(mnt) (mnt = maleonitriledithiolate, [S(2)C(2)(CN)(2)](2)(-)), and [2.2.2]-cryptand in acetonitrile yields [Na([2.2.2]-cryptand)](4)[Ag(4)(mnt)(4)].0.33MeCN (2). The Ag(4) anion of 2 is analogous to that in 1. Reaction of AgNO(3), Na(2)(mnt), and [NBu(4)]Br in acetonitrile yields [NBu(4)](4)[Ag(4)(mnt)(4)] (3). The anion of 3 also comprises an Ag(4) core coordinated by four mnt ligands, but the Ag(4) core is diamond-shaped rather than tetrahedral. Reaction of [K([2.2.2]-cryptand)](3)[Ag(mns)(Se(6))] with KNH(2) and [2.2.2]-cryptand in acetonitrile yields [K([2.2.2]-cryptand)](3)[Ag(mns)(2)].2MeCN (4). The anion of 4 comprises an Ag center coordinated by two mns ligands in a tetrahedral arrangement. Reaction of AgNO(3), 2 equiv of Na(2)(mnt), and [2.2.2]-cryptand in acetonitrile yields [Na([2.2.2]-cryptand)](3)[Ag(mnt)(2)] (5). The anion of 5 is analogous to that of 4. Electronic absorption and infrared spectra of each complex show behavior characteristic of metal-maleonitriledichalcogenates. Crystal data (153 K): 1, P2/n, Z = 2, a = 18.362(2) A, b = 16.500(1) A, c = 19.673(2) A, beta = 94.67(1) degrees, V = 5941(1) A(3); 2, P4, Z = 4, a= 27.039(4) A, c = 15.358(3) A, V = 11229(3) A(3); 3, P2(1)/c, Z = 6, a = 15.689(3) A, b = 51.924(11) A, c = 17.393(4) A, beta = 93.51(1) degrees, V = 14142(5) A(3); 4, P2(1)/c, Z = 4, a = 13.997(1) A, b = 21.866(2) A, c = 28.281(2) A, beta = 97.72(1) degrees, V = 8578(1) A(3); 5, P2/n, Z = 2, a = 11.547(2) A, b = 11.766(2) A, c = 27.774(6) A, beta = 91.85(3) degrees, V = 3772(1) A(3).  相似文献   

3.
The anions of the title compounds contain [Ag(SCN)4] units, with the S atoms coordinating to Ag+ in a tetrahedral arrangement. Whereas in the isolated anions of tripotassium tetra­thio­cyanatoargentate(I), K3[Ag(SCN)4], (I), all SCN? groups are bonded as terminal ligands, in tetrapotassium di‐μ‐thio­cyanato‐S:S‐bis­[dithio­cyanato­argentate(I)], K4[Ag2(SCN)6], (II), two AgS4 tetrahedra share one common edge. In poly[potassium [argentate(I)‐di‐μ‐thio­cyanato‐S:S]], K[Ag(SCN)2], (III), edge‐ and vertex‐sharing of AgS4 tetrahedra results in infinite [Ag(SCN)2]? layers.  相似文献   

4.
5.
[catena‐Bis(1,2‐diaminoethane)nickel(II)‐µ‐dicyanoargentate]‐dicyanoargentate, [Ni(en)2Ag2(CN)4], was synthesized and its chain‐like crystal structure was determined by X‐ray crystal analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Reactivity of Tris(dialkylthiophosphinyl)phosphines – Crystal Structure of [Ag{O[P(S)Me2]2}2][AsF6] In contrast to tris(dialkylphosphoryl)phosphines the reaction of tris(dimethylthiophosphinyl)phosphine with transition metal hexafluoroarsenates of the type [M(SO2)m [AsF6]n (M = Ag, m = 0, n = 1; M = Fe, Cd, m = n = 2) forms no molecular 2 : 1-complexes but polymeric products. The silver polymer is transformed into [Ag{O[P(S)Me2]2}2][AsF6], which is also formed by the reaction of Ag[AsF6] with O[P(S)Me2]2. It crystallizes in the space group P1 with a = 862.5(2), b = 1 241.4(2), c = 1 254.0(3)pm, α = 80.34(1), β = 101.99(6), γ= 73.75(1)° (at 20°C) and Z = 2. The central silver atom is surrounded by four sulphur atoms in a slighly distorted tetrahedron. The average (Ag? S) and (P? S) bond lengthes are 259.4(2) pm and 194.9(2)pm, respectively.  相似文献   

8.
Cs[Ag4Zn2(SCN)9]     
Caesium tetrasilver dizinc nona­thio­cyanate, Cs[Ag4Zn2(SCN)9], forms a continuous structure, where the Ag atoms and the S atoms of the thio­cyanate groups form chains which run along [101]. These chains are bonded together through the Cs and Zn atoms. It is not possible to distinguish between space groups P1 and P, but, if the latter space group is correct, the structure contains a thio­cyanate group disordered across a centre of inversion. The structure is described in space group P, in which the Cs atom also lies on a centre of inversion.  相似文献   

9.
10.
11.
12.
The silver cyanoguanidine complexes [Ag(cgn)2]F ( 1 ), [Ag(cgn)2][BF4] ( 2 ), [Ag(cgn)2][ClO4] ( 3 ) and [Ag(cgn)][NO3] ( 4 ) were obtained from aqueous solutions of the corresponding silver salts and cyanoguanidine. The crystal structures of 1 and 2 have been determined by single crystal X‐ray diffraction. 1 : Space group P1¯, Z = 2, cell constants at —65 °C: a =618.18(3), b = 761.49(8), c = 971.2(1) pm; α = 93.56(1), β = 97.439(8), γ = 97.376(9)β; R1 = 0.0218 2 : Space group P1¯, Z = 2, cell constants at —65 °C: a = 549.79(9), b = 958.17(17), c = 1121.04(12) pm; α = 90.026(13), β = 102.520(11), γ = 95.937(14)°; R1 = 0.0283.  相似文献   

13.
14.
Synchrotron radiation X-ray powder diffraction data (SPDD) have been obtained for Ag[AgF4]2, Au[AuF4]2, Ag[AuF4], and Ag[AuF6]. Ag[AgF4]2 and Au[AuF4]2 are isostructural with Ag[AuF4]2, space group (SG) P2(1)/n, Z = 2, with the following: for Ag[AgF4]2 a = 5.04664(8), b = 11.0542(2), c = 5.44914(9) A, beta = 97.170(2) degrees; for Au[AuF4]2 a = 5.203(2), b = 11.186(3), c = 5.531(2) A, beta = 90.55(2) degrees. The structure of Ag[AgF4]2 was refined successfully (SPDD) applying the Rietveld method, yielding the following interatomic distances (A): AgII-F = 2.056(12), 2.200(13), 2.558(13); AgIII-F = two at 1.846(12), others = 1.887(12), 1.909(13), 2.786-(12), 2.796(12), 2.855(12). AgAuF4, like other AA'F4 salts (A = Na-Rb; A' = Ag, Au), crystallizes in the KBrF4 structure type, SG I4/mcm (140), Z = 4 with a = 5.79109(6), c = 10.81676(7) A. SPDD gave (in A) four AuIII-F = 1.89(1) and eight AgI-F = 2.577(7). SPDD for AgAuF6 confirmed that it has the LiSbF6 structure, SG R3, Z = 3, with a = 5.2840(2), c = 15.0451(6) A.  相似文献   

15.
张鹏  黄明生  张颖  郑兰荪  杨华惠 《化学学报》1991,49(11):1120-1123
[Ag(dppm)NO3]2晶体属单斜晶系, 空间群Cc。单胞参数: a=1.2704(1),b=1.7028(2), c=2.2634(5)nm; β=100.66(1)°; Z=4; V=4.8117nm^3; Dc=1.530g·cm^-^3。两个双齿膦配体dppm连续两个银离子形成一个扭曲八元环。Ag-Ag间距离为0.3089nm, 硝酸根以不对称配位方式与银离子配位, 结构测定的最后偏离因子R=0.050。  相似文献   

16.
A new decanuclear silver(I) compound Ag108‐S)(dtp)8 [dtp=S2P(OEt)2] was isolated from a reaction mixture containing W2S4(dtp)2 and AgN03, and its solid‐state molecular structure was determinated by X‐ray crystallography. The crystallographic study revealed that the compound contains a distorted mono‐capped quasi‐prism [Agio] with an octat‐bridging S atom at the center of the prism. The compound (C32H80Ag10O16P8S17, Mr=2592.46) crystallizes in the monoclinic P21/n space group, with a = 1.5111(5) nm, b=2.3656(8) nm, c=2.284(1) nm, β= 96.88(3)°, V=8.107(5) nm3, Z=4 and D,=2.12 g · cm?3. The solution using direct method and full‐matrix least‐squares refinement led to R=0.066, Rw=0.078 for 3928 reflections with I3σ(I).  相似文献   

17.
Lu  Z.  Ding  Y.  Xu  Y.  Yao  Z.  Liu  Q.  Lang  J. 《Journal of Thermal Analysis and Calorimetry》2002,70(3):985-994
Thermal analysis on two new heterometallic sulfide clusters, [PPh4]2[WS3(CuBr)3]2 and [PPh4]2[MoS3(CuBr)3]2 (where PPh4=tetraphenyl phosphonium, =pentamethylcyclopenta- dienyl), was carried out using a simultaneous TG-DTA unit in an atmosphere of flowing nitrogen and at various heating rates. Supplemented using EDS method, their thermal behavior and properties, together with the composition of their intermediate product, were examined and discussed in connection with their distinctive molecular structure as a dianion, which provided some theoretically and practically significant information. Both clusters decomposed in a two-step mode, but without a stable new phase composed of Mo/W-Cu-S formed during their decomposition process as we expected. Based on TG-DTG data, four methods, i.e. Achar-Brindley-Sharp, Coats-Redfern, Kissinger and Flynn- Wall-Ozawa equation, were used to calculate the non-isothermal kinetic parameters and to determine the most probable mechanisms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
A ferrocene‐based dithiol 1,1′‐[fc(C{O}OCH2CH2SH)2] has been prepared and treated with a AgI salt to form the stable dithiolate compound [fc(C{O}OCH2CH2SAg)2]n (fc=[Fe(η5‐C5H4)2]). This is used as a reagent for the preparation of the nanocluster [Ag74S19(dppp)6(fc(C{O}OCH2CH2S)2)18] which was obtained in good yield (dppp=1,3‐bis(diphenylphosphino)propane).  相似文献   

19.
The reaction of AgSCN with (Me3PhN)3[Fe(NCS)6] in DMF yields two‐dimensional polymeric, heteronuclear complexes (Me3PhN)2[Ag2Fe(SCN)6] ( 1 ) and (Me3PhN)6[Ag6Fe3(SCN)18] · CH2Cl2·DMF ( 2a ) with bridging SCN? ligands, whereas additional (Me3PhN)(SCN) leads to (Me3PhN)4[Ag2Fe(SCN)8] ( 3 ) with a one‐dimensional structure. The selenocyanato complex 2b , homologous to 2a , could also be prepared. Single crystal X‐ray structure determinations show, that the Ag+ ions in 1 and 2a are coordinated tetrahedrally by four S atoms, in 3 by one N and three S atoms of the bridging SCN? ligands; six N atoms of the SCN? or SeCN? ligands bind to Fe2+ in an octahedral arrangement.  相似文献   

20.
The reaction of ZrCl4 with oleum (65 % SO3) in the presence of Ag2SO4 at 250 °C yielded colorless single crystals of Zr(S2O7)2 [orthorhombic, Pccn, Z = 4, a = 709.08(6) pm, b = 1442.2(2) pm, c = 942.23(9) pm, V = 963.5(2) × 106 pm3]. Zr(S2O7)2 shows Zr4+ ions in an eightfold distorted square antiprismatic coordination of oxygen atoms belonging to four chelating disulfate units. Each S2O72– ion is connected to a further Zr4+ ion leading to chains according to 1[Zr(S2O7)4/2]. The same reaction at a temperature of 150 °C resulted in the formation of Ag4[Zr(S2O7)4] [monoclinic, C2/c, Z = 4, a = 1829.35(9) pm, b = 704.37(3) pm, c = 1999.1(1) pm, β = 117.844(2)°, V = 2277.6(2) × 106 pm3]. Ag4[Zr(S2O7)4] exhibits the unprecedented [Zr(S2O7)4]4– anion, in which the central Zr4+ cation is coordinated by four chelating disulfate units. Thus, in Ag4[Zr(S2O7)4] the 1[[Zr(S2O7)4/2] chains observed in Zr(S2O7)2 are formally cut into pieces by the implementation of Ag+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号