首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We performed a direct numerical simulation of a low-Mach-number turbulent boundary layer using fundamental equations of compressible flow to investigate the relation between vortex structures and the density distribution. A fully developed turbulent boundary layer of compressible flow was reproduced in the simulation. From the turbulence statistics and instantaneous structures of the density fluctuation, we identified different features in the three regions of a near-wall field, far field and flow field outside the turbulent boundary layer. Structures of the density fluctuation could correspond to sound sources in a turbulent boundary layer. We then observed fine-scale structures of the density fluctuation that were strongly related to turbulent vortices in the vicinity of the wall. In addition, there were large-scale density structures in the upper boundary layer. The large-scale structures seem to correlate with the fine-scale structures close to the wall, with there being a non-steady larger-scale density fluctuation profile in the outer region of the boundary layer.  相似文献   

2.
The majority of the studies which consider the flow of a dissociating gas in a turbulent boundary layer are devoted to the investigation of either frozen or equilibrium flows on a flat plate.The frozen turbulent boundary layer has been studied by Dorrance [1], Kutateladze and Leont'ev [2], and Lapin and Sergeev [3]. A study of the effect of catalytic recombination processes at the plate surface on the heat transfer in a frozen turbulent boundary layer was made by Lapin [4].Kosterin and Koshmarov [5], Ginzburg [6], Dorrance [7], and Lapin [8] have studied the turbulent boundary layer on a plate in equilibrium dissociating gas.The calculation of the heat transfer in a turbulent boundary layer on a catalytic plate surface with nonequilibrium dissociation was made by Kulgein [9]. In this study the nonequilibrium nature of the dissociation process was taken into account only in the laminar sublayer, while the flow in the turbulent core was considered frozen. The solution was found numerically using a computer by means of a laborious iteration process.The present paper reports a method for calculating the turbulent boundary layer on a flat catalytic plate with arbitrary dissociation rate. The method, constructed using the assumptions customary for turbulent boundary layer theory, is a successive approximation method. Good convergence of the method is assured by the fact that the effect of the nonequilibrium nature of the dissociation process on the parameter distribution in the boundary layer and, consequently, on the friction and heat transfer may be allowed for merely by finding corrections, usually relatively small, to the distribution of these parameters in the equilibrium or frozen flows. The basis of the study is the two-layer scheme of the turbulent boundary layer. The Prandtl and Schmidt numbers and also their turbulent analogs are taken equal to unity. As the model of the dissociating gas we use the Lighthill model of the ideal dissociating gas [10], extended by Freeman [11] to nonequilibrium flows.  相似文献   

3.
苏锋  张涛  姜楠 《实验力学》2006,21(3):271-277
通过在固壁表面的平板湍流边界层沿流向平行放置若干通电加热的金属细丝,在平板表面形成沿展向周期性分布的温度场,利用该温度场引起的空气热对流,在湍流边界层近壁区域产生一组沿湍流边界层展向周期分布的流向涡结构。对壁湍流小尺度结构标度律统计特性的研究表明,金属丝加热后形成的规则流向涡结构将壁湍流各种尺度湍涡结构不规则的脉动有序地组织起来,增强了湍流小尺度结构的层次结构相似性,减小了壁湍流中小尺度结构的间歇性和奇异性,抑制了壁湍流中奇异的湍涡结构。  相似文献   

4.
The results of an experimental investigation of the effect of the streamwise pressure gradient in a turbulent boundary layer on the permissible height of the surface roughness of bodies in an incompressible fluid flow are presented. The permissible roughness Reynolds number for which the characteristics of the turbulent boundary layer remain the same as in the case of flow past a smooth surface is determined.  相似文献   

5.
A three-dimensional Direct Numerical Simulation (DNS) of a laminar separation bubble in the presence of oscillating flow is performed. The oscillating flow induces a streamwise pressure gradient varying in time. The special shape of the upper boundary of the computational domain, together with the oscillating pressure gradient causes the boundary layer flow to alternately separate and re-attach. When the inflow decelerates, the shear layer starts to separate and rolls up. Simultaneously the flow becomes 3D. After a transient period, the phase-averaged reverse flow inside the separation bubble reaches speeds ranging from 20 up to 150% of the free-stream velocity. During these phases, the flow is absolutely unstable and self-sustained turbulence can exist. When the inflow starts to accelerate, a spanwise roll of turbulent flow is shed from the shear layer. Shortly after this, the remainder of the separation bubble moves downstream and rejoins with the shed turbulent roll. During the flow-acceleration phase, a patch of laminar boundary layer flow is obtained. Along the flat plate, a series of turbulent patches of flow travelling downstream, separated by laminar flow can be observed, reminiscent of boundary layer flow in a turbine cascade with periodically appearing free-stream disturbances.  相似文献   

6.
An efficient hybrid uncorrelated wall plane waves–boundary element method (UWPW-BEM) technique is proposed to predict the flow-induced noise from a structure in low Mach number turbulent flow. Reynolds-averaged Navier-Stokes equations are used to estimate the turbulent boundary layer parameters such as convective velocity, boundary layer thickness, and wall shear stress over the surface of the structure. The spectrum of the wall pressure fluctuations is evaluated from the turbulent boundary layer parameters and by using semi-empirical models from literature. The wall pressure field underneath the turbulent boundary layer is synthesized by realizations of uncorrelated wall plane waves (UWPW). An acoustic BEM solver is then employed to compute the acoustic pressure scattered by the structure from the synthesized wall pressure field. Finally, the acoustic response of the structure in turbulent flow is obtained as an ensemble average of the acoustic pressures due to all realizations of uncorrelated plane waves. To demonstrate the hybrid UWPW-BEM approach, the self-noise generated by a flat plate in turbulent flow with Reynolds number based on chord Rec = 4.9 × 105 is predicted. The results are compared with those obtained from a large eddy simulation (LES)-BEM technique as well as with experimental data from literature.  相似文献   

7.
The partial differential equation of the boundary layer on a flat plate are simplified by using the universal variables for turbulent flow. For laminar flow this gives boundary layer having a finite thickness and a friction coefficient differing by a few percent from the Blasius value. For a turbulent flow a differential equation for the velocity distribution is obtained with a parameter which varies slowly with the streamwise coordinate. The numerical value of this parameter is determined as an eigenvalue of the differential equations giving a velocity profile which evolves as the boundary layer thickens. Numerical calculations using a simple eddy viscosity model gave results in very good agreement with experiment.  相似文献   

8.
A flat plate experiment was performed in a water tunnel to determine the effects of a vortex generator jet on the characteristics of a turbulent boundary layer at various wall normal locations. The results show that the characteristic distributions of the turbulent fluctuation quantities are nearly unaffected by the induced vortex structures neither in the steady nor in the dynamic blowing case. The shear layer interaction between the turbulent main flow and the jet flow produces less turbulent fluctuations than it is expected from a turbulent free jet flow. Thus, the mixing process of this flow control strategy is based only on a large-scale momentum transport superimposed by the turbulent fluctuation quantities. This allows a separation of scales for physical interpretation and numerical simulations.  相似文献   

9.
The results of measuring the pressure fluctuations on the wall of the nozzle of a hypersonic wind tunnel beneath a developed turbulent boundary layer are presented for the Mach number M = 7.5. On the basis of a statistical analysis, it is shown that the action of the turbulent flow is dynamically similar to the propagation of a random sequence of wave packets with continuously distributed temporal and spatial scales. Low-frequency disturbances are associated with large-scale structures of long duration that propagate at a mean-statistical velocity similar in value to the outer flow velocity. The continuous generation of weakly-correlated small-scale disturbances ensuring the maintenance and development of turbulence occurs chiefly in the inner region of the boundary layer. Spectral estimates of the power generated by the turbulent flow in the wall region of the boundary layer are presented.  相似文献   

10.
An experimental study on heat transfer enhancement for a turbulent natural convection boundary layer in air along a vertical flat plate has been performed by inserting a long flat plate in the spanwise direction (simple heat transfer promoter) and short flat plates aligned in the spanwise direction (split heat transfer promoter) with clearances into the near-wall region of the boundary layer. For a simple heat transfer promoter, the heat transfer coefficients increase by a peak value of approximately 37% in the downstream region of the promoter compared with those in the usual turbulent natural convection boundary layer. It is found from flow visualization and simultaneous measurements of the flow and thermal fields with hot- and cold-wires that such increase of heat transfer coefficients is mainly caused by the deflection of flows toward the outer region of the boundary layer and the invasion of low-temperature fluids from the outer region to the near-wall region with large-scale vortex motions riding out the promoter. However, heat transfer coefficients for a split heat transfer promoter exhibit an increase in peak value of approximately 60% in the downstream region of the promoter. Flow visualization and PIV measurements show that such remarkable heat transfer enhancement is attributed to longitudinal vortices generated by flows passing through the clearances of the promoter in addition to large-scale vortex motions riding out the promoter. Consequently, it is concluded that heat transfer enhancement of the turbulent natural convection boundary layer can be substantially achieved in a wide area of the turbulent natural convection boundary layer by employing multiple column split heat transfer promoters. It may be expected that the heat transfer enhancement in excess of approximately 40% can be accomplished by inserting such promoters.  相似文献   

11.
The flow control effects of nanosecond plasma actuation on the boundary layer flow of a typical compressor controlled diffusion airfoil are investigated using large eddy simulation method. Three types of plasma actuation are designed to control the boundary layer flow, and two mechanisms of compressor airfoil boundary layer flow control using nanosecond plasma actuation have been found. The plasma actuations located within the laminar boundary layer flow can induce a small vortex structure through influencing on the density and pressure of the flow field. As the small vortex structure moves downstream along the blade surface with the main flow, it can suppress the turbulent flow mixing and reduce the total pressure loss. The flow control effect of the small vortex structure is summarized as wall jet effect. Differently, the plasma actuation located within the turbulent boundary layer flow can act on the shear layer flow and induce a large vortex structure. While moving downstream, this large vortex structure can suppress the turbulent flow mixing too.  相似文献   

12.
The disturbances generated by external turbulence in the boundary layer on a flat plate set suddenly in motion are determined. A turbulent flow calculated by direct numerical simulation is taken as the initial conditions. The solution obtained simulates the initial stage of laminar-turbulent transition in the flat-plate boundary layer at a high turbulence level in the oncoming flow. The solution makes it possible to estimate the effects of different factors, such as nonstationarity, nonlinearity, and the parameters of the freestream velocity fluctuation spectrum, on disturbance enhancement in the boundary layer.  相似文献   

13.
14.
PIV study on a shock-induced separation in a transonic flow   总被引:1,自引:0,他引:1  
A transonic interaction between a steady shock wave and a turbulent boundary layer in a Mach 1.4 channel flow is experimentally investigated by means of particle image velocimetry (PIV). In the test section, the lower wall is equipped with a contour profile shaped as a bump allowing flow separation. The transonic interaction, characterized by the existence in the outer flow of a lambda shock pattern, causes the separation of the boundary layer, and a low-speed recirculating bubble is observed downstream of the shock foot. Two-component PIV velocity measurements have been performed using an iterative gradient-based cross-correlation algorithm, providing high-speed and flexible calculations, instead of the classic multi-pass processing with FFT-based cross-correlation. The experiments are performed discussing all the hypotheses linked to the experimental set-up and the technique of investigation such as the two-dimensionality assumption of the flow, the particle response assessment, the seeding system, and the PIV correlation uncertainty. Mean velocity fields are presented for the whole interaction with particular attention for the recirculating bubble downstream of the detachment, especially in the mixing layer zone where the effects of the shear stress are most relevant. Turbulence is discussed in details, the results are compared to previous study, and new results are given for the turbulent production term and the return to isotropy mechanism. Finally, using different camera lens, a zoom in the vicinity of the wall presents mean and turbulent velocity fields for the incoming boundary layer.  相似文献   

15.
This paper presents a study of the turbulent structure of the diffusion boundary layer. A macromolecular solution (PEO WSR 301) is injected into a cylindrical pipe under turbulent flow conditions (Re ≈ 40 000). Laser velocimetry was the experimental technique used. Velocity profiles and turbulence intensities are determined in a boundary layer with injections of newtonian or non-newtonian fluids. We attempt to give an interpretation of these results as a function of the decomposition of the diffusion field.  相似文献   

16.
本文采用时间解析的二维粒子图像测速技术,对零压力梯度光滑以及汇聚和发散沟槽表面平板湍流边界层统计特性和流动结构进行了研究.结果表明在垂直于汇聚和发散沟槽表面的对称平面内,相对于光滑壁面,发散沟槽壁面使当地边界层厚度、壁面摩擦阻力、湍流脉动、雷诺应力等明显减小;而汇聚沟槽壁面对湍流边界层特性和流动结构的影响正好相反,汇聚沟槽使壁面流体有远离壁面向上运动的趋势,因而导致边界层厚度增加了约43%;同时,在汇聚沟槽表面情况下流向大尺度相干结构更容易形成,这对减阻是不利的.此外,顺向涡数量在湍流边界层的对数区均存在一个极大值,发散沟槽表面所对应的极大值位置更靠近沟槽壁面,而在汇聚沟槽表面则有远离壁面的趋势,由顺向涡诱导产生的较强的喷射和扫掠运动会在湍流边界层中产生较强的剪切作用,顺向涡数量的减少是发散沟槽壁面当地摩擦阻力降低的主要原因.  相似文献   

17.
CFG桩复合地基沉降影响因素分析   总被引:4,自引:0,他引:4  
对绕2D水翼无分离流边界层内的初生空化形态进行了实验研究. 采用高速摄像机观测 了空化初生结构的形态,应用2D-LDV测量了空化初生时翼型周围的流动速度分布,并对实 验结果进行了分析. 结果表明:绕水翼无分离边界层内,初生空化结构中空泡伴随 着近壁湍流拟序结构的发生而出现,在初生空化条件下,形成空化涡结构,大量的微空泡产生于发夹 涡结构中,并在涡结构的猝发过程中出现生成---长大---溃灭---反弹---再溃灭的过程. 初生空 化涡结构具有空泡和近壁拟序结构双重特性.  相似文献   

18.
Time-developing direct numerical simulation (DNS) was performed to clarify the higher-order turbulent behaviors in the thermally-driven boundary layers both in air and water along a heated vertical flat plate. The predicted statistics of the heat transfer rates and the higher-order turbulent behaviors such as skewness factors, flatness factors and spatial correlation coefficients of the velocity and temperature fluctuations in the natural-convection boundary layer correspond well with those obtained from experiments for space-developing flows. The numerical results reveal that the turbulent structures of the buoyancy-driven boundary layers are mainly controlled by the fluid motions in the outer region of the boundary layer, and these large-scale structures are strongly connected with the generation of turbulence in the thermally-driven boundary layers, in accordance with the actual observations for space-developing flows. Moreover, to specify the turbulence structures of the boundary layers, the cross-correlation coefficients and the characteristic length scales are examined for the velocity and thermal fields. Consequently, it is found that with a slight increase in freestream velocity, the cross-correlation coefficient for the Reynolds shear stress and turbulent heat flux increases for opposing flow and decreases for aiding flow, and the integral scales for the velocity and temperature fields become larger for opposing flow and smaller for aiding flow compared with those for the pure natural-convection boundary layer.  相似文献   

19.
苏锋  张涛  姜楠 《实验力学》2005,20(1):83-89
通过在平板湍流边界层沿流向固壁表面平行放置若干条通电加热的金属细丝,在平板表面形成沿展向周期性分布的温度场,利用该温度场引起的空气热对流,在湍流边界层近壁区域产生一组沿湍流边界层展向周期分布的大尺度流向涡结构,改变了平板湍流边界层中不同尺度结构及其能量分布。采用对壁湍流多尺度结构的子波分析表明,在湍流边界层近壁区域产生规则的流向涡结构将壁湍流各种尺度湍涡结构不规则的脉动有序地组织起来,抑制了壁湍流各种尺度湍涡结构脉动,特别抑制了能量最大尺度湍涡结构的脉动,减小由于湍流脉动引起的在湍流边界层法向和展向的动量和能量损耗,从而减小了湍流的阻力。  相似文献   

20.
Many theoretical and experimental papers [1–4] have been devoted to investigating the turbulent boundary layer in the initial section of a channel. For the most part, however, the flow of an incompressible fluid with constant parameters is considered. There are many practical cases in which it is of interest to treat the development of the turbulent boundary layer of gas in the initial section of a pipe when conditions are strongly nonisothermal. A solution of a problem of this type, based on the theory of limit laws, is given in paper [1]. The present article extends this solution to the case of the flow of a high-enthalpy gas when the effect of gas dissociation on the turbulent boundary layer characteristics must be taken into account. We shall consider the flow of a mixture of i gases which is in a frozen state inside the boundary layer, and in an equilibrium state on its boundaries. Formulas are derived for the laws of friction and heat exchange, and a solution is given for the turbulent boundary layer equations in the initial section of the pipe when the wall temperature is constant and the gas flows at a subsonic velocity.Finally the authors are grateful to S. S. Kutateladze for discussing the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号