首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of atomic oxygen and nitrogen on the beta-cristobalite (100) surface is investigated from first principles density functional calculations within the generalized gradient approximation. A periodic SiO2 slab model (6 layers relaxing 4 or 6) ended with a layer of Si or O atoms is employed throughout the study. Several adsorption minima and diffusion transition states have been characterized for the two lowest spin states of both systems. A strong chemisorption is found for either O or N in several sites with both slab endings (e.g., it is found an average adsorption energy of 5.89 eV for O (singlet state) and 4.12 eV for N (doublet state) over the Si face). The approach of O or N on top O gives place to the O2 and NO abstraction reactions without energy barriers. Atomic sticking coefficients and desorption rate constants have been estimated (300-1900 K) by using the standard transition state theory. The high adsorption energies found for O and N over silica point out that the atomic recombination processes (i.e., Eley-Rideal and Langmuir-Hinshelwood mechanisms) will play a more important role in the atomic detachment processes than the thermal desorption processes. Furthermore, the different behavior observed for the O and N thermal desorption processes suggests that the published kinetic models for atomic O and N recombination reactions on SiO2 surfaces, based on low adsorption energies (e.g., 3.5 eV for both O and N), should probably be revised.  相似文献   

2.
The adsorption of water multilayers on a well defined single crystal, hydroxyl-terminated ZnO-surface, H(1x1)-O-ZnO(0001) surface has been investigated using infrared (IR) spectroscopy, helium atom scattering (HAS) and X-ray photoelectron spectroscopy (XPS). The results reveal the formation of well ordered mono-, bi- and multilayers of D2O and H2O on this substrate. On the bare hydroxyl-covered H(1x1) surface the OH-stretch vibration could be clearly identified in the IR-spectra. The water adsorption and desorption kinetics on this hydroxylated surface were studied by monitoring the reflectivity of the surface for helium atoms. The analysis of the data yielded activation energies for desorption of H2O from the H(1x1) O-ZnO surface of 55.2 kJ mol-1. The results reveal the formation of ordered mono- and bilayers. Further exposure to water at 113 K results in the formation of amorphous 3-D islands.  相似文献   

3.
Cavitand molecules having double bond terminated alkyl chains and different bridging groups at the upper rim have been grafted on H-terminated Si(100) surface via photochemical hydrosilylation of the double bonds. Pure and mixed monolayers have been obtained from mesitylene solutions of either pure cavitand or cavitand/1-octene mixtures. Angle resolved high-resolution X-ray photoelectron spectroscopy has been used as the main tool for the monolayer characterization. The cavitand decorated surface consists of Si-C bonded layers with the upper rim at the top of the layer. Grafting of pure cavitands leads to not-well-packed layers, which are not able to efficiently passivate the Si(100) surface. By contrast, monolayers obtained from cavitand/1-octene mixtures consist of well-packed layers since they prevent silicon oxidation after aging. AFM measurements showed that these monolayers have a structured topography, with objects protruding from the Si(100) surface with average heights compatible with the expected ones for cavitand molecules.  相似文献   

4.
Adsorption of trisilylamine (TSA) on the Si(100) surface has been studied using temperature programmed desorption (TPD) and time‐of‐flight electron stimulated desorption (TOFESD). TPD spectra exhibit the presence of three desorption states denoted by β1, β2, and β3 associated with the presence of a mono‐, di‐, and tri‐hydride state respectively. This behavior is identical with previously observed desorption studies resulting from atomic hydrogen adsorption, indicating that the nitrogen species in the adsorbate has minimal impact on the surface structure of the hydride. Preliminary electron irradiation studies are reported and indicate that the formation of a thin silicon nitride layer is induced as a result of the irradiation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Recently several theoretical studies have examined oxygen adsorption on the clean, reduced TiO2(110) surface. However the photocatalytic behavior of TiO2 and the scavenging ability of oxygen are known to be influenced by the presence of surface hydroxyls. In this paper the chemistry of O2 on the hydroxylated TiO2 surface is investigated by means of first-principles total energy calculations and molecular dynamics (MD) simulations. The MD trajectories show a direct, spontaneous reaction between O2 and the surface hydroxyls, thus supporting the experimental hypothesis that the reaction does not necessarily pass through a chemisorbed O2 state. Following this reaction, the most stable chemisorbed intermediates are found to be peroxide species HO2 and H2O2. Although these intermediates are very stable on the short time scale of MD simulations, the energetics suggests that their further transformation is connected to a new 300 K feature observed in the experimental water temperature programmed desorption (TPD) spectrum. The participation of two less stable intermediate states, involving terminal hydroxyls and/or chemisorbed water plus oxygen adatoms, to the desorption process, is not supported by the total energy calculations. Analysis of the projected density of states, however, suggests the possibility that these intermediates have a role in completing the surface oxidation immediately before desorption.  相似文献   

7.
Ultrathin chromium oxide films were prepared on a W(100) surface under ultrahigh-vacuum conditions and investigated in situ by X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and low-energy electron diffraction. The results show that, at Cr coverage of less than 1 monolayer, CrO2 is formed by oxidizing pre-deposited Cr at 300-320 K in approximately 10(-7) mbar oxygen. However, an increase of temperature causes formation of Cr2O3. At Cr coverage above 1 monolayer, only Cr2O3 is detected.  相似文献   

8.
The adsorption mechanism of water on the hydroxylated (001) plane of α-Al(2)O(3) was studied by measuring adsorption isotherms and GCMC simulations. The experimental adsorption isotherms for three α-Al(2)O(3) samples from different sources are typical type II, in which adsorption starts sharply at low pressures, suggesting a high affinity of water to the Al(2)O(3) surface. Water molecules are adsorbed in two registered forms (bilayer structure). In the first form, water is registered at the center of three surface hydroxyl groups by directing a proton of the water. In the second form, a water molecule is adsorbed by bridging two of the first-layer water molecules through hydrogen bonding, by which a hexagonal ring network is constructed over the hydroxylated surface. The network domains are spread over the surface, and their size decreases as the temperature increases. The simulated adsorption isotherms present a characteristic two-dimensional (2D) phase diagram including a 2D critical point at 365K, which is higher than that on the hydroxylated Cr(2)O(3) surface (319 K). This fact substantiates the high affinity of water molecules to the α-Al(2)O(3) surfaces, which enhances the adsorbability originating from higher heat of adsorption. The higher affinity of water molecules to the α-Al(2)O(3) (001) plane is ascribed to the high compatibility of the crystal plane to form a hexagonal ring network of (001) plane of ice Ih.  相似文献   

9.
The structure relaxation mechanism of the fluorapatite (100) surface under completely hydrated ambient conditions has been investigated with the grazing incidence X-ray diffraction (GIXRD) technique. Detailed information on lateral as well as perpendicular ordering corresponding to the water molecules and atomic relaxations of the (100) surface of fluorapatite (FAp) crystal was obtained from the experimental analysis of the CTR intensities. Two laterally ordered water layers are present at the water/mineral interface. The first layer consists of four water molecules located at 1.6(1) A above the relaxed fluorapatite (100) surface while the second shows the presence of only two water molecules at a distance of 3.18(10) A from the mineral surface. Thus, the first layer water molecules complete the truncated coordination sites of the topmost surface Ca atoms, while the second water layer molecules remain bonded by means of H-bonding to the first layer molecules and the surface phosphate groups. Molecular mechanics simulations using force field techniques are in good agreement with this general structural behavior determined from the experiment.  相似文献   

10.
The structure and dynamics of the adsorbate CO(2)/KCl(100) from a diluted phase to a saturated monolayer have been investigated with He atom scattering (HAS), low-energy electron diffraction (LEED), and polarization dependent infrared spectroscopy (PIRS). Two adsorbate phases with different CO(2) coverage have been found. The low-coverage phase is disordered at temperatures near 80 K and becomes at least partially ordered at lower temperatures, characterized by a (2√2×√2)R45° diffraction pattern. The saturated 2D phase has a high long-range order and exhibits (6√2×√2)R45° symmetry. Its isosteric heat of adsorption is 26 ± 4 kJ mol(-1). According to PIRS, the molecules are oriented nearly parallel to the surface, the average tilt angle in the saturated monolayer phase is 10° with respect to the surface plane. For both phases, structure models are proposed by means of potential calculations. For the saturated monolayer phase, a striped herringbone structure with 12 inequivalent molecules is deduced. The simulation of infrared spectra based on the proposed structures and the vibrational exciton approach gives reasonable agreement between experimental and simulated infrared spectra.  相似文献   

11.
We have studied the adsorption of Au, Pd, and Pt atoms on the NiO(100) surface and on NiO/Ag(100) thin films using plane wave DFT+U calculations. The scope of this work is to compare the adsorption properties of NiO, a reducible transition metal oxide, with those of MgO, a simple binary oxide with the same crystal structure and similar lattice parameter. At the same time, we are interested in the adsorption characteristics of NiO ultra-thin films (three atomic layers) deposited on Ag(100) single crystals. Also in this case the scope is to compare NiO/Ag(100) with the corresponding MgO/Ag(100) films which show unusual properties for the case of Au adsorption. The results show that the transition metal atoms bind in a similar way on NiO(100) and NiO/Ag(100) films, with Pt, Pd, and Au forming bonds of decreasing strength in this order. No charging effects occur for Au adsorbed on NiO/Ag(100) films, at variance with MgO/Ag(100). The reasons are analyzed in terms of work function of the metal/oxide interface. Possible ways to modify this property by growing alternate layers of MgO and NiO are discussed.  相似文献   

12.
Production of gaseous OH radicals in the 248-350 nm photoirradiation of NO3(-) doped on amorphous ice at 100 K was monitored directly by using resonance-enhanced multiphoton ionization. The translational energy distribution of the OH product was represented by a Maxwell-Boltzmann energy distribution with the translational temperature of 3250 +/- 250 K. The rotational temperature was estimated to be 175 +/- 25 K. We have confirmed that the OH production should be attributed to the secondary photolysis of H2O2 produced on ice surface on the basis of the results of controlled photolysis experiments for H2O2 doped on ice surface.  相似文献   

13.
Based on density functional theory and thermodynamic model, we compile a phase diagram for the polar NiO(111) surface as a function of temperature and oxygen pressure. The electronic correlation between Ni-3d electrons has also been included in the form of GGA+U method. Consistent with recent experiments, present GGA+U calculation indicates that over a broad range of oxygen partial pressure, the most stable phases are the oxygen and Ni terminated octopolar structures, which are almost degenerate in energy. We also show that the stabilization of the NiO(111) surface goes together with remarkable changes in the geometrical and electronic structure.  相似文献   

14.
By performing first-principles Molecular Dynamics simulations at 300 K, we show that water dissociates on the A-La2O3(001) surface giving rise to one exclusive type of hydroxyl-group, which is associated with a surface reconstruction, incorporating an additional oxygen ion into the oxide subsurface, yielding a surface structure that is oxygen rich.  相似文献   

15.
Water molecule adsorption properties on the BiVO4 (100) surface   总被引:1,自引:0,他引:1  
The water absorption properties at the surface of BiVO4 are attracting a great deal of attention because the system is a promising candidate as a photocatalyst operating in the visible light range. This has motivated the present investigation via first principles molecular dynamics, which has revealed that a H2O molecule is adsorbed molecularly, instead of dissociatively, at the fivefold Bi site with an adsorption energy of approximately 0.58 eV/molecule. The band gap of the system shrinks slightly (by approximately 0.2 eV) upon water adsorption and it is likely that oxygen atoms belonging to the adsorbed water molecules to the Bi sites are oxidized, as inferred by the small Bi-Owater equilibrium distance (approximately 2.6-2.8 A) very close to the Bi-O bond in the bulk crystal. In the case of water adsorption at a Bi site, the distance between Hwater and V, which is a reduction site, is larger than in the case of adsorption at a V site, indicating that the proton reduction processes may be suppressed.  相似文献   

16.
The thermal stability of perfluoralkylsiloxane monolayers in a vacuum is investigated via X-ray photoelectron spectroscopy (XPS) for temperatures up to 600 degrees C. 1H,1H,2H,2H,-perfluorodecyltrichlorosilane (FDTS) monolayers are deposited on oxidized Si(100) surfaces from the vapor phase with various degrees of surface coverage. Significant monolayer desorption is observed to occur at temperatures below 300 degrees C regardless of the initial monolayer coverage. The desorption mechanism follows first-order kinetics and is independent of the initial coverage. Removal of FDTS is found to occur by the loss of the entire molecular chain, as evidenced by the fact that the CF(3)/CF(2) peak area ratios remain unaffected by the annealing process although CF(n)()/Si peak ratio declines with annealing. This is in sharp contrast to the behavior observed for octadecyltrichlorosilane monolayer for which elevated temperature leads to C-C bond breakage and successive shortening of the alkyl chain. It is also shown that the binding energy and the shape of the F 1s line are good indicators of the degree of disorder in the chain, as well as a measure of the interaction of the chain with the silicon surface.  相似文献   

17.
Using a density functional approach, we have explored the cycloaddition of acrylonitrile on the Si(100) surface. The buckling of the surface dimers characteristic for the (2x1) reconstructed surface is shown to favor structures with a dipolar moment such as the resonant form of acrylonitrile with cumulative double bonds. The bond of acrylonitrile via a single C atom is a possible intermediate leading to the nitrile structure of the adsorbed molecule.  相似文献   

18.
The current study employs hybrid-exchange density functional theory to investigate the adsorption of HF and HCl to under-coordinated Al ions on the beta-AlF(3) (100) surface. It is shown that the geometries of the adsorbates are strongly dependent on coverage. Furthermore, the adsorption of HCl leads to a number of distinct structures that have very similar energies. It is proposed that this result may explain the high catalytic activity of aluminium fluoride and aluminium chloro-fluoride surfaces towards chlorine-fluorine exchange reactions. The stretching and bending frequencies of the H-F and H-Cl bonds at half and full monolayer coverage are also calculated and the vibrational spectrum is found to be strongly dependent on the adsorption site and the coverage. The vibrational frequency shifts provide, therefore, a mechanism for experimentally characterising these surfaces.  相似文献   

19.
The adsorption and phase formation of bromide on Ag(100) has been studied by chronocoulometry and surface X-ray scattering (SXS). With increasing electrode potential, bromide undergoes a phase transition from a lattice gas to an ordered c(2×2) structure (θ=0.5). The degree of lateral disorder was estimated by comparing the SXS- and the electrochemical measurements. Based on chronocoulometric experiments, a thermodynamic analysis of charge density data was performed to describe the bromide adsorption at the Ag(100) electrode. The Gibbs surfaces excess, electrosorption valencies, Esin–Markov coefficients, and the Gibbs energy of adsorption, lateral interaction energies as well as surface dipole moments have been estimated. The experimental θ versus E- isotherms are modeled employing (i) a quasi-chemical approximation as well as (ii) the results of a recent Monte Carlo simulation. An attempt is made to discuss the structure data and thermodynamic quantities of bromide adsorption on Ag(100) on the basis of the Grahame–Parsons model of the Helmholtz layer.  相似文献   

20.
The adsorption and desorption of CO on the hydroxylated, O-terminated polar ZnO(0001) surface has been studied using He-atom scattering. The experimental results reveal the formation of a physisorbed ordered CO overlayer. In addition to recording angular distributions of elastically scattered He atoms, also the dynamical properties of the CO overlayer have been investigated using inelastic He-atom scattering. With the aid of electronic structure calculations a loss peak with an energy transfer of 7.2 meV is assigned to the frustrated translation of the CO molecule normal to the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号