首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NH-Bridged tetradentate ligands were synthesized to achieve stable trans Ru(II) bis(polypyridyl) complexes. The polypyridyl part of the ligand was either symmetric, as in N,N-bis(1,10-phenanthroline-2-yl)amine (phen-NH-phen), or asymmetric, as in N-(1,10-phenanthroline-2-yl)-N-(6-yl-dipyridyl[2,3-a:2',3'-c]phenazine)amine (dppz-NH-phen). Protonation of phen-NH-phen with trifluoroacetic acid and the subsequent reaction with RuCl3 yield trans-[Ru(phen-NH-phen)Cl2]. The chloro ligands in this compound can easily be replaced by stronger ligands, such as CH3CN and DMSO. In this way, complexes trans-[Ru(phen-NH-phen)(CH3CN)(DMSO)](PF6)2 (1), trans-[Ru(phen-NH-phen)(DMSO)2](PF6)2 (2), and trans-[Ru(phen-NH-phen)(CH3CN)2](PF6)2 (3) were obtained. X-ray structures were determined for 1 and 3. Following a procedure similar to that used with phen-NH-phen, the complex trans-[Ru(dppz-NH-phen)(CH3CN)2](PF6)2 (4) was obtained. To our knowledge, this is the first reported trans ruthenium(II) bis(polypyridyl) complex with two different polypyridyl ligands in the equatorial plane.  相似文献   

2.
Nitrosylruthenium complexes containing 2,2':6',2"-terpyridine (terpy) have been synthesized and characterized. The three alkoxo complexes trans-(NO, OCH3), cis-(Cl, OCH3)-[RuCl(OCH3)(NO)(terpy)]PF6 ([2]PF6), trans-(NO, OC2H5), cis-(Cl, OC2H5)-[RuCl(OC2H5)(NO)(terpy)]PF6 ([3]PF6), and [RuCl(OC3H7)(NO)(terpy)]PF6 ([4]PF6) were synthesized by reactions of trans-(Cl, Cl), cis-(NO, Cl)-[RuCl2(NO)(terpy)]PF6 ([1]PF6) with NaOCH3 in CH3OH, C2H5OH, and C3H7OH, respectively. Reactions of [3]PF6 with an acid such as hydrochloric acid and trifluoromethansulforic acid afford nitrosyl complexes in which the alkoxo ligand is substituted. The geometrical isomer of [1]PF6, trans-(NO, Cl), cis-(Cl, Cl)-[RuCl2(NO)(terpy)]PF6 ([5]PF6), was obtained by the reaction of [3]PF6 in a hydrochloric acid solution. Reaction of [3]PF6 with trifluoromethansulforic acid in CH3CN gave trans-(NO, Cl), cis-(CH3CN, Cl)-[RuCl(CH3CN)(NO)(terpy)]2+ ([6]2+) under refluxing conditions. The structures of [3]PF6, [4]PF6.CH3CN, [5]CF3SO3, and [6](PF6)2 were determined by X-ray crystallograpy.  相似文献   

3.
Tripodal bis(imidazole) thioether ligands, (N-methyl-4,5-diphenyl-2-imidazolyl)2C(OR)C(CH3)2SR' (BIT(OR,SR'); R = H, CH3; R' = CH3, C(CH3)3, C(C6H5)3), have been prepared, offering the same N2S donor atom set as the CuM binding site of the hydroxylase enzymes, dopamine beta hydroxylase and peptidylglycine hydroxylating monooxygenase. Isolable copper(I) complexes of the type [(BIT(OR,SMe))Cu(CO)]PF6 (3a and 3b) are produced in reactions of the respective tripodal ligands 1a (R = H) and 1b (R = Me) with [Cu(CH3CN)4]PF6 in CH2Cl2 under CO (1 atm); the pyramidal structure of 3a has been determined crystallographically. The infrared (IR) nu(CO)'s of 3a and 3b (L = CO) are comparable to those of the Cu(M)-carbonylated enzymes, indicating similar electronic character at the copper centers. The reaction of [(BIT(OH,SMe))Cu(CH3CN)]PF6 (2a) with dioxygen produces [(BIT(O,SOMe))2Cu2(DMF)2](PF6)2 (4), whose X-ray structure revealed the presence of bridging BIT-alkoxo ligands and terminal -SOMe groups. In contrast, oxygenation of 2b (R = Me) affords crystallographically defined [(BIT(OMe,SMe))2Cu2(mu-OH)2](OTf)2 (5), in which the copper centers are oxygenated without accompanying sulfur oxidation. Complex 5 in DMF is transformed into five-coordinate, mononuclear [CuII(BIT(OMe,SMe))(DMF)2](PF6)2 (6). The sterically hindered BIT(OR,SR') ligands 9 and 10 (R' = t-Bu; R = H, Me) and 11 and 12 (R' = CPh3; R = H, Me) were also prepared and examined for copper coordination/oxygenation. Oxygenation of copper(I) complex 13b derived from the BIT(OMe,SBu-t) ligand is slow, relative to 2b, producing a mixture of (BIT(OMe,SBu-t))2Cu2(mu-OH)2-type complexes 14b and 15b in which the -SBu-t group is uncoordinated; one of these complexes (15b) has been ortho-oxygenated on a neighboring aryl group according to the X-ray analysis and characterization of the free ligand. Oxygenation of the copper(I) complex derived from BIT(OMe,SCPh3) ligand 12 produces a novel dinuclear disulfide complex, [(BIT(OMe,S)2Cu2(mu-OH)2](PF6)2 (17), which is structurally characterized. Reactivity studies under anaerobic conditions in the presence of t-BuNC indicate that 17 is the result of copper(I)-induced detritylation followed by oxygenation of a highly reactive copper(I)-thiolate complex.  相似文献   

4.
The tetradentate ligands, 2,2'-(1H-pyrazole-3,5-diyl)bis(4- methylpyridine) (4,4'-Me2dppzH), 2,2'-(1H-pyrazole-3,5-diyl)bis(6-methylpyridine) (6,6'-Me2dppzH), 3,5-di(pyrid-2-yl)pyrazole (dppzH), and dipyridyloxadiazole (dpo) react with either Ru(trpy)Cl3 or trans-Ru(trpy)Cl2(NCCH3), where trpy is 2,2',2'-terpyridine, to form a variety of Ru(II) complexes. Among these are the symmetrical chloro-bridged Ru(II) dimer and the "in" and "out" geometric isomers of the monometallic Ru(II) containing species where "in" and "out" refer to the orientation of the Ru-Cl vector relative to the centroid of the ligand backbone. Thirteen complexes were prepared and painstakingly purified by careful recrystallization and/or exhaustive column chromatography. These complexes were characterized by 1H and 13C NMR, electronic absorption, and infrared spectroscopy. Additionally, [Ru2(tryp)2(6,6'-Me2dppz)mu-Cl](BF4)2 (3b(BF4)2), [Ru2(trpy)2(4,4'-Me2dppz)mu-Cl](PF6)2.0.5MeOH (3c), [Ru2(trpy)2(6,6'-Me2dppz)(CH2C(O)CH3)](PF6)2.0.5(CH3)2CO (9b), "in"-[Ru(trpy)(4,4'-Me2dppz)Cl](PF6).(CH3)2CO (1c), and "out"-[Ru(trpy)(dpo)Cl](PF6).(CH3)2CO (2d) were characterized by X-ray crystallography. Several ligand substitution reactions were attempted. For example, [Ru2(trpy)2(6,6'-Me2dppz)mu-Cl](BF4)2 (3b) was reacted with hydroxide ion to produce [Ru2(trpy)2(6,6'-Me2dppz)mu-OH](PF6)2 (6b). Complex 6b reacts with benzyl bromide to produce [Ru2(trpy)2(6,6'-Me2dppz)mu-Br](PF6)2 (7b) or with (CH3)3Sil to produce [Ru2(trpy)2(6,6'-Me2dppz)mu-I](PF6)2 (8b). of 6b with acetone forms the methyl enolate complex [Ru2(trpy)2(6,6'-Me2dppz)(CH2COCH3)](PF6)2 (9b) while, analogously to a Cannizarro reaction, the reaction with benzaldehyde forms the bridging benzoate complex [Ru2(trpy)2(6,6'-Me2dppz)(C6H4CO2)](PF6)2 (11b). The bridging azide complex [Ru2(trpy)2(6,6'-Me2dppz)mu-N3](PF6)2 (10b) is formed by reaction of 6b with (CH3)3-SiN3. Additionally, the chloride ligands of the monometallic complexes of "in"-[Ru(trpy)(dpo)Cl](PF6) (1d), "in"-[Ru(trpy)(4,4'-Me2dpo)Cl](PF6)] (1e), and "out"-[Ru(trpy)(dpo)Cl](PF6) (2d) were substituted with water to form their respective aqua complexes, 4d, 4e, and 5d. All of the complexes exhibit broad unsymmetrial absorption bands in the visible portion of the electromagnetic spectrum. The dimetallic complexes 3b and 3c exhibit two, 1e- reversible oxidation waves at +0.72 and +1.15 V, and at +0.64 and +1.13 V, respectively. These complexes were not emissive.  相似文献   

5.
A copper(I)-mediated reductive dechlorination reaction involving an "internal" chloromethylene substrate at the pyridyl 6-position of one TMPA arm (TMPA triple bond TPA triple bond tris(2-pyridylmethyl)amine) leads to a 1:1 ratio of the starting ligand 6ClCH2-TMPA and a new methyl-TMPA product, 6CH2H-TMPA. On the basis of observed product distributions and a kinetic study, a reaction mechanism involving intramolecular oxidative insertion of Cu(I) to the C-Cl substrate is suggested. The resulting organometallic intermediate is then protonated, leading to the observed products.  相似文献   

6.
Lin R  Yip JH 《Inorganic chemistry》2006,45(11):4423-4430
Reactions of 9,10-bis(diphenylphosphino)anthracene (PAnP) and AgX (X = OTf-, ClO4-, PF6-, and BF4-) led to luminescent Ag-PAnP complexes with rich structural diversity. Helical polymers [Ag(mu-PAnP)(CH3CN)X]n (X = OTf-, ClO4-, and PF6-) and discrete binuclear [Ag2(mu-PAnP)2(CH3CN)4](PF6)2, trinuclear [Ag3(mu-PAnP)3 supersetBF4](BF4)2, and tetranuclear [Ag4(mu-PAnP)4 superset(ClO4)2](ClO4)2 metallacycles were isolated from different solvents. The tri- and tetranuclear metallacycles exhibited novel puckered-ring and saddlelike structures. Variable-temperature (VT) 31P{1H}-NMR spectroscopy of the complexes was solvent dependent. The dynamics in CD3CN involve two species, but the exchange processes in CD2Cl2 are more complicated. A ring-opening polymerization was proposed for the exchange mechanism in CD3CN.  相似文献   

7.
The design, synthesis, and characterization of binuclear copper(I) complexes and investigations of their dioxygen reactivities are of interest in understanding fundamental aspects of copper/O2 reactivity and in modeling copper enzyme active-site chemistry. In the latter regard, unsymmetrical binuclear systems are of interest. Here, we describe the chemistry of new unsymmetrical binuclear copper complexes, starting with the binucleating ligand UN2-H, possessing a m-xylyl moiety linking a bis[2-(2-pyridyl)ethyl]amine (PY2) tridentate chelator and a 2-[2-(methylamino)ethyl]pyridine bidentate group. Dicopper(I) complexes of UN2-H, [Cu2(UN2-H)]2+ (1), as PF6- and ClO4- salts, are synthesized. These react with O2 (Cu:O2 = 2:1, manometry) resulting in the hydroxylation of the xylyl moiety, producing the phenoxohydroxodicopper(II) complex [Cu2(UN2-O-)(OH-)(CH3CN)]2+ (2). Compound 2(PF6)2 is characterized by X-ray crystallography, which reveals features similar to those of a structure described previously (Karlin, K. D.; et al. J. Am. Chem. Soc. 1984, 106, 2121-2128) for a symmetrical binucleating analogue having two tridentate PY2 moieties; here a CH3CN ligand replaces one pyridylethyl arm. Isotope labeling from a reaction of 1 using 18O2 shows that the ligand UN2-OH, extracted from 2, possesses an 18O-labeled phenol oxygen atom. Thus, the transformation 1 + O2-->2 represents a monooxygenase model system. [CuI2(UN2-OH)(CH3CN)]2+ (3), a new binuclear dicopper(I) complex with an unsymmetrical coordination environment is generated either by reduction of 2 with diphenylhydrazine or in reactions of cuprous salts with UN2-OH. Complex 3 reacts with O2 at -80 degrees C, producing the (mu-1,1-hydroperoxo)dicopper(II) complex [CuII2(UN2-O-)(OOH-)]2+ (4) (lambda max 390 nm (epsilon 4200 M-1 cm-1), formulated on the basis of the stoichiometry of O2 uptake by 3 (Cu:O2 = 2:1, manometry), its reaction with PPh3 giving O=PPh3 (85%), and comparison to previously studied close analogues. Discussions include the relevance and comparison to other copper bioinorganic chemistry.  相似文献   

8.
Three ruthenium sulfide clusters with labile CH3CN ligands have been photochemically synthesized. Irradiation of [(cymene)3Ru3S2](PF6)2 ([1](PF6)2) in CH3CN gives [(cymene)2(CH3CN)3Ru3S2](PF6)2 ([2](PF6)2), which has been characterized by 1H NMR spectroscopy, ESI mass spectrometry, and chemical reactivity. Treatment of [2](PF6)2 with PPh3 gives [(cymene)2(CH3CN)2(PPh3)Ru3S2](PF6)2 ([3](PF6)2) and [(cymene)2(CH3CN)(PPh3)2Ru3S2](PF6)2 ([4](PF6)2), while treatment with 1,4,7-trithiacyclononane (9S3) gives [(cymene)2(9S3)Ru3S2](PF6)2 ([5](PF6)2). A crystallographic study demonstrated that the Ru3 core in [3](PF6)2, [4](PF6)2, and [5](PF6)2 is distorted with a pair of elongated Ru-Ru bonds. Cyclic voltammetry shows that [3](PF6)2 and [4](PF6)2 undergo two closely spaced reversible one-electron reductions whereas [5](PF6)2 undergoes one irreversible one-electron reduction and one reversible one-electron reduction. Prolonged irradiation of [1](PF6)2 in CH3CN causes decomposition, resulting in the pentanuclear cluster [(cymene)4Ru5S4](PF6)2 ([6](PF6)2).  相似文献   

9.
New complexes of Rh(III), Ru(II), and Pd(II) with N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (tpen) and its analogues have been prepared. The reaction of RhCl(3).nH(2)O with tpen is slow and allows one to isolate the products of three consecutive substitution steps: Rh(2)Cl(6)(tpen) (1), cis-[RhCl(2)(eta(4)-tpen)](+) (2), and [RhCl(eta(5)-tpen)](2+) (3). In acetonitrile the reaction stops at the step of the formation of cis-[RhCl(2)(eta(4)-tpen)](+), whereas [RhCl(eta(5)-tpen)](2+) is the final product of the further reaction in ethanol. Fully chelated [Rh(tpen)](3+) could not be obtained. Bis(acetylacetonato)palladium(II), Pd(acac)(2), reacts with tpen and its analogues, N,N,N',N'-tetrakis(2-pyridylmethyl)-1,3-propanediamine (tptn) and N,N,N',N'-tetrakis(2-pyridylmethyl)-(R)-1,2-propylenediamine (R-tppn), to give [Pd(eta(4)-tpen)](2+) (4), [Pd(eta(4)-tppn)](2+) (5), and [Pd(eta(4)-tptn)](2+) (6), respectively. Two pyridyl arms remain uncoordinated in these cases. The formation of unstable Pd(III) complexes from these Pd(II) complexes in solution was suggested on the basis of electrochemical measurements. Ruthenium(III) trichloride, RuCl(3).nH(2)O, is reduced to give a Ru(II) complex with fully coordinated tpen, [Ru(tpen)](2+) (7). The same product was obtained in a more straightforward reaction of Ru(II)Cl(2)(dimethyl sulfoxide)(4) with tpen. Electrochemical studies showed a quasi-reversible [Ru(tpen)](2+/3+) couple for [7](ClO(4))(2) (E(1/2) = 1.05 V vs Ag/AgCl). Crystal structures of [2](PF(6)).2CH(3)CN, [3](PF(6))(2).CH(3)CN, [6](ClO(4))(2), and [7](ClO(4))(2).0.5H(2)O were determined. Crystal data: [2](PF(6)).2CH(3)CN, monoclinic, C2, a = 16.974(4) A, b = 8.064(3) A, c = 13.247(3) A, beta = 106.37(2) degrees, V = 1739.9(8) A(3), Z = 2; [3](PF(6))(2).CH(3)CN, triclinic, P1, a = 11.430(1) A, b = 19.234(3) A, c = 8.101(1) A, alpha = 99.43(1) degrees, beta = 93.89(1) degrees, gamma = 80.10(1) degrees, V = 1729.3(4) A(3), Z = 2; [6](ClO(4))(2), orthorhombic, Pnna, a = 8.147(1) A, b = 25.57(1) A, c = 14.770(4) A, V = 3076(3) A(3), Z = 4; [7](ClO(4))(2).0.5H(2)O, monoclinic, P2(1)/c, a = 10.046(7) A, b = 19.049(2) A, c = 15.696(3) A, beta = 101.46(3) degrees, V = 2943(2) A(3), Z = 4.  相似文献   

10.
Employing a binucleating phenol-containing ligand PD'OH, a mu-phenoxo-mu-hydroperoxo dicopper(II) complex [Cu(II)2(PD'O-)(-OOH)(RCN)2](ClO4)2 (1, R = CH3, CH3CH2 or C6H5CH2; lambda(max) = 407 nm; nu(O-O) = 870 cm(-1); J. Am. Chem. Soc. 2005, 127, 15360) is generated by reacting a precursor dicopper(I) complex [Cu(I)2(PD'OH)(CH3CN)2](ClO4)2 (2) with O2 in nitrile solvents at -80 degrees C. Species 1 is unable to oxidize externally added substrates, for instance, PPh3, 2,4-tert-butylphenol, or 9,10-dihydroanthracene. However, upon thermal decay, it hydroxylates copper-bound organocyanides (e.g., benzylcyanide), leading to the corresponding aldehyde while releasing cyanide. This chemistry mimics that known for the copper enzyme dopamine-beta-monooxygenase. The thermal decay of 1 also leads to a product [Cu(II)3(L")2(Cl-)2](PF6)2 (6); its X-ray structure reveals that L" is a Schiff base-containing ligand which apparently derives from both oxidative N-dealkylation and then oxidative dehydrogenation of PD'OH; the chloride presumably derives from the CH2Cl2 solvent. With an excess of PPh3 added to 1, a binuclear Cu(I) complex [Cu(I)2(L')(PPh3)2](ClO4)2 (5) with a cross-linked PD'OH ligand L' has also been identified and crystallographically and chemically characterized. The newly formed C-O bond and an apparent k(H)/k(D) = 2.9 +/- 0.2 isotope effect in the benzylcyanide oxidation reaction suggest a common ligand-based radical forms during compound 1 thermal decay reactions. A di-mu-hydroxide-bridged tetranuclear copper(II) cluster compound [{Cu(II)2(PD'O-)(OH-)}2](ClO4)4 (8) has also been isolated following warming of 1. Its formation is consistent with the generation of [Cu(II)2(PD'O-)(OH-)]2+, with dimerization a reflection of the large Cu...Cu distance and thus the preference for not having a second bridging ligand atom (in addition to the phenolate O) for dicopper(II) ligation within the PD'O- ligand framework.  相似文献   

11.
Mononuclear ruthenium complexes [RuCl(L1)(CH(3)CN)(2)](PF(6)) (2a), [RuCl(L2)(CH(3)CN)(2)](PF(6)) (2b), [Ru(L1)(CH(3)CN)(3)](PF(6))(2) (4a), [Ru(L2)(CH(3)CN)(3)](PF(6))(2) (4b), [Ru(L2)(2)](PF(6))(2) (5), [RuCl(L1)(CH(3)CN)(PPh(3))](PF(6)) (6), [RuCl(L1)(CO)(2)](PF(6)) (7), and [RuCl(L1)(CO)(PPh(3))](PF(6)) (8), and a tetranuclear complex [Ru(2)Ag(2)Cl(2)(L1)(2)(CH(3)CN)(6)](PF(6))(4) (3) containing 3-(1,10-phenanthrolin-2-yl)-1-(pyridin-2-ylmethyl)imidazolylidene (L1) and 3-butyl-1-(1,10-phenanthrolin-2-yl)imidazolylidene (L2) have been prepared and fully characterized by NMR, ESI-MS, UV-vis spectroscopy, and X-ray crystallography. Both L1 and L2 act as pincer NNC donors coordinated to ruthenium (II) ion. In 3, the Ru(II) and Ag(I) ions are linked by two bridging Cl(-) through a rhomboid Ag(2)Cl(2) ring with two Ru(II) extending to above and down the plane. Complexes 2-8 show absorption maximum over the 354-428 nm blueshifted compared to Ru(bpy)(3)(2+) due to strong σ-donating and weak π-acceptor properties of NHC ligands. Electrochemical studies show Ru(II)/Ru(III) couples over 0.578-1.274 V.  相似文献   

12.
A comprehensive study of the structural and spectroscopic properties of two-, three-, and four-coordinate copper(I) complexes with aliphatic phosphine ligands is presented. All complexes described in this work are characterized by X-ray crystallography. The intramolecular Cu...Cu separations in [Cu2(dcpm)2]X2, [Cu2(dcpm)2-(CH3CN)2]X2, and [Cu2(dmpm)3]-(ClO4)2 (dcpm=bis(dicyclohexylphosphino)methane; dmpm=bis(dimethylphosphino)methane; X=ClO4- and PF6-) are in the range 2.639(2)-3.021(2) A. The anion...CuI interaction is weak, as evidenced by the nearest O...Cu separation of 2.558(6) A in [Cu2(dcpm)2](ClO4)2 and the closest Cu...F separation of 2.79(1) A in [Cu2(dcpm)2](PF6)2. The absorption bands of [Cu2(dcpm)2]X2 and [Cu2(dcpm)2(CH3CN)2]X2 (X=ClO4- and PF6-) at lambda max 307-311 nm in CH2Cl2 are assigned as 1[3d sigma* --> 4p sigma] transitions; this has been confirmed by resonance Raman spectroscopy. The triplet emissions in the visible region from these complexes exhibit long lifetimes and are sensitive to the environment. The lowest emissive excited state is tentatively ascribed as 3[(dx2-y2, dxy)(pz)] in nature. For [Cu2(dcpm)2]2+ salts in CH3CN, the emissive species is postulated to be [Cu2(dcpm)2(CH3CN)n]2+ (n > or = 3). Efficient photocatalytic reduction of MV2+ (4,4'-dimethyl-2,2'-bipyridinium) to MV+ in alcoholic solutions by using [Cu2(dcpm)2](PF6)2 or [Cu2(dppm)2(CH3CN)4](ClO4)2 (dppm=bis(diphenylphosphino)methane) as a catalyst has been observed. The addition of CH3CN or use of [Cu2(dmpm)3]-(ClO4)2 as a catalyst did not allow photocatalytic reduction processes to occur.  相似文献   

13.
We report a high yield, two-step synthesis of fac-[Ru(bpy)(CH3CN)3NO2]PF6 from the known complex [(p-cym)Ru(bpy)Cl]PF6 (p-cym = eta(6)-p-cymene). [(p-cym)Ru(bpy)NO2]PF6 is prepared by reacting [(p-cymene)Ru(bpy)Cl]PF6 with AgNO3/KNO2 or AgNO2. The 15NO2 analogue is prepared using K15NO2. Displacement of p-cymene from [(p-cym)Ru(bpy)NO2]PF6 by acetonitrile gives [Ru(bpy)(CH3CN)3NO2]PF6. The new complexes [(p-cym)Ru(bpy)NO2]PF6 and fac-[Ru(bpy)(CH3CN)3NO2]PF6 have been fully characterized by 1H and 15N NMR, IR, elemental analysis, and single-crystal structure determination. Reaction of [Ru(bpy)(CH3CN)3NO2]PF6 with the appropriate ligands gives the new complexes [Ru(bpy)(Tp)NO2] (Tp = HB(pz)3-, pz = 1-pyrazolyl), [Ru(bpy)(Tpm)NO2]PF6 (Tpm = HC(pz)3), and the previously prepared [Ru(bpy)(trpy)NO2]PF6 (trpy = 2,2',6',2' '-terpyridine). Reaction of the nitro complexes with HPF6 gives the new nitrosyl complexes [Ru(bpy)TpNO][PF6]2 and [Ru(bpy)(Tpm)NO][PF6]3. All complexes were prepared with 15N-labeled nitro or nitrosyl groups. The nitro and nitrosyl complexes were characterized by 1H and 15N NMR and IR spectroscopy, elemental analysis, cyclic voltammetry, and single-crystal structure determination for [Ru(bpy)TpNO][PF6]2. For the nitro complexes, a linear correlation is observed between the nitro 15N NMR chemical shift and 1/nu(asym), where nu(asym) is the asymmetric stretching frequency of the nitro group.  相似文献   

14.
Copper(I) complexes of tripodal tris(N-methyl-4,5-diphenyl-imidazolyl)methane ligands, N3CR (1a-c, R = OH, OMe, H), have been prepared as models for the Cu(A) site of copper hydroxylase enzymes. In the absence of additional donors, the ligands 1 react with [Cu(CH3CN)4]PF6 (2) to produce dinuclear complexes [(N3CR)2Cu2](PF6)2 (3) in which the tripodal ligands bridge two trigonal Cu centers; the structures of 3b and 3c are established by X-ray diffraction. Mononuclear adducts [(N3CR)CuL]Z are produced with L = acetonitrile (4), carbon monoxide (5), and t-BuNC (6, 7). The carbonyl complexes 5 are in dynamic equilibrium with the dimeric complexes 3, but 5c (R = H) can be isolated. The structures of the isocyanide derivatives depend critically on the tripod methane substituent, R. Thus, the X-ray structures of 6 (R = OMe) and 7 (R = H) show trigonal and tetrahedral geometries, respectively, with bi- or tridentate coordination of the tripod. A trinuclear complex [Cu3(N3COH)2(t-BuNC)2](PF6)3 (8) is formed from N3COH (1a) which features both three-coordinate and two-coordinate Cu atoms and bidentate tripod coordination. Reactions of dioxygen with dinuclear 3c or mononuclear [(N3CR)CuL]Z are sluggish, producing from the latter in acetone [(N3CH)CuII(L)(L')](PF6)2 (9, L = acetone, L' = H2O).  相似文献   

15.
In this report, we describe the reversible dioxygen reactivity of ((6)L)Fe(II) (1) [(6)L = partially fluorinated tetraphenylporphyrin with covalently appended TMPA moiety; TMPA = tris(2-pyridylmethyl)amine] using a combination of low-temperature UV-vis and multinuclear ((1)H and (2)H) NMR spectroscopies. Complex 1, or its pyrrole-deuterated analogue ((6)L-d(8))Fe(II) (1-d(8)), exhibits downfield shifted pyrrole resonances (delta 28-60 ppm) in all solvents utilized [CH(2)Cl(2), (CH(3))(2)C(O), CH(3)CN, THF], indicative of a five-coordinate high-spin ferrous heme, even when there is no exogenous axial solvent ligand present (i.e., in methylene chloride). Furthermore, ((6)L)Fe(II) (1) exhibits non-pyrrolic upfield and downfield shifted peaks in CH(2)Cl(2), (CH(3))(2)C(O), and CH(3)CN solvents, which we ascribed to resonances arising from the intra- or intermolecular binding of a TMPA-pyridyl arm to the ferrous heme. Upon exposure to dioxygen at 193 K in methylene chloride, ((6)L)Fe(II) (1) [UV-vis: lambda(max) = 433 (Soret), 529 (sh), 559 nm] reversibly forms a dioxygen adduct [UV-vis: lambda(max) = 422 (Soret), 542 nm], formulated as the six-coordinate low-spin [delta(pyrrole) 9.3 ppm, 193 K] heme-superoxo complex ((6)L)Fe(III)-(O(2)(-)) (2). The coordination of the tethered pyridyl arm to the heme-superoxo complex as axial base ligand is suggested. In coordinating solvents such as THF, reversible oxygenation (193 K) of ((6)L)Fe(II) (1) [UV-vis: lambda(max) = 424 (Soret), 542 nm] also occurs to give a similar adduct ((6)L)Fe(III)-(O(2)(-)) (2) [UV-vis: lambda(max) = 418 (Soret), 537 nm. (2)H NMR: delta(pyrrole) 8.9 ppm, 193 K]. Here, we are unable to distinguish between a bound solvent ligand or tethered pyridyl arm as axial base ligand. In all solvents, the dioxygen adducts decompose (thermally) to the ferric-hydroxy complex ((6)L)Fe(III)-OH (3) [UV-vis: lambda(max) = 412-414 (Soret), 566-575 nm; approximately delta(pyrrole) 120 ppm at 193 K]. This study on the O(2)-binding chemistry of the heme-only homonuclear ((6)L)Fe(II) (1) system lays the foundation for a more complete understanding of the dioxygen reactivity of heterobinuclear heme-Cu complexes, such as [((6)L)Fe(II)Cu(I)](+), which are models for cytochrome c oxidase.  相似文献   

16.
Lee CM  Chuang YL  Chiang CY  Lee GH  Liaw WF 《Inorganic chemistry》2006,45(26):10895-10904
The stable mononuclear Ni(III)-thiolate complexes [NiIII(L)(P(C6H3-3-SiMe3-2-S)3)]- (L = SePh (2), Cl (3), SEt (4), 2-S-C4H3S (5), CH2CN (7)) were isolated and characterized by UV-vis, EPR, IR, SQUID, CV, 1H NMR, and single-crystal X-ray diffraction. The increased basicity (electronic density) of the nickel center of complexes [NiIII(L)(P(C6H3-3-SiMe3-2-S)3)]- modulated by the monodentate ligand L and the substituted groups of the phenylthiolate rings promotes the stability and reactivity. In contrast to the irreversible reduction at -1.17 V (vs Cp2Fe/Cp2Fe+) for complex 3, the cyclic voltammograms of complexes [NiIII(SePh)(P(o-C6H4S)3)]-, 2, 4, and 7 display reversible NiIII/II redox processes with E(1/2) = -1.20, -1.26, -1.32, and -1.34 V (vs Cp2Fe/Cp2Fe+), respectively. Compared to complex 2 containing a phenylselenolate-coordinated ligand, complex 4 with a stronger electron-donating ethylthiolate coordinated to the Ni(III) promotes dechlorination of CH2Cl2 to yield complex 3 (kobs = (6.01 +/- 0.03) x 10-4 s-1 for conversion of complex 4 into 3 vs kobs = (4.78 +/- 0.02) x 10-5 s-1 for conversion of complex 2 into 3). Interestingly, addition of CH3CN into complex 3 in the presence of sodium hydride yielded the stable Ni(III)-cyanomethanide complex 7 with a NiIII-CH2CN bond distance of 2.037(3) A. The NiIII-SEt bond length of 2.273(1) A in complex 4 is at the upper end of the 2.12-2.28 A range for the NiIII-S bond lengths of the oxidized-form [NiFe] hydrogenases. In contrast to the inertness of complexes 3 and 7 under CO atmosphere, carbon monoxide triggers the reductive elimination of the monodentate chalcogenolate ligand of complexes 2, 4, and 5 to produce the trigonal bipyramidal complex [NiII(CO)(P(C6H3-3-SiMe3-2-S)3]- (6).  相似文献   

17.
Ruthenium complexes bearing ethylbis(2-pyridylethyl)amine (ebpea), which has flexible -C(2)H(4)- arms between the amine and the pyridyl groups and coordinates to a metal center in facial and meridional modes, have been synthesized and characterized. Three trichloro complexes, fac-[Ru(III)Cl(3)(ebpea)] (fac-[1]), mer-[Ru(III)Cl(3)(ebpea)] (mer-[1]), and mer-[Ru(II)Cl(3){η(2)-N(C(2)H(5))(C(2)H(4)py)═CH-CH(2)py}] (mer-[2]), were synthesized using the Ru blue solution. Formation of mer-[2] proceeded via a C-H activation of the CH(2) group next to the amine nitrogen atom of the ethylene arm. Reduction reactions of fac- and mer-[1] afforded a triacetonitrile complex mer-[Ru(II)(CH(3)CN)(3)(ebpea)](PF(6))(2) (mer-[3](PF(6))(2)). Five nitrosyl complexes fac-[RuX(2)(NO)(ebpea)]PF(6) (X = Cl for fac-[4]PF(6); X = ONO(2) for fac-[5]PF(6)) and mer-[RuXY(NO)(ebpea)]PF(6) (X = Cl, Y = Cl for mer-[4]PF(6); X = Cl, Y = CH(3)O for mer-[6]PF(6); X = Cl, Y = OH for mer-[7]PF(6)) were synthesized and characterized by X-ray crystallography. A reaction of mer-[2] in H(2)O-C(2)H(5)OH at room temperature afforded mer-[1]. Oxidation of C(2)H(5)OH in H(2)O-C(2)H(5)OH and i-C(3)H(7)OH in H(2)O-i-C(3)H(7)OH to acetaldehyde and acetone by mer-[2] under stirring at room temperature occurred with formation of mer-[1]. Alternative C-H activation of the CH(2) group occurred next to the pyridyl group, and formation of a C-N bond between the CH moiety and the nitrosyl ligand afforded a nitroso complex [Ru(II)(N(3))(2){N(O)CH(py)CH(2)N(C(2)H(5))C(2)H(4)py}] ([8]) in reactions of nitrosyl complexes with sodium azide in methanol, and reaction of [8] with hydrochloric acid afforded a corresponding chloronitroso complex [Ru(II)Cl(2){N(O)CH(py)CH(2)N(C(2)H(5))C(2)H(4)py}] ([9]).  相似文献   

18.
A paramagnetic ligand 6bpyNO (2,2'-bipyridin-6-yl tert-butyl nitroxide) is a newcomer in the field of metal-radical hybrid magnetic materials. Complexes [CuII(6bpyNO)Cl2] and [NiII(6bpyNO)2](PF6)2 having highly planar chelate rings showed considerably strong ferromagnetic exchange couplings J/kB = 202 and 192 K, respectively, across the direct radical oxygen coordination bonds (the spin Hamiltonian is defined as -2JSi.Sj).  相似文献   

19.
A family of hexa-coordinated ruthenium(II) complexes of bis(N-pyridylimidazolylidenyl)methane (L) were prepared and structurally characterized. Carbene transfer reactions of [Ru(p-cymene)Cl(2)](2), [Ru(CO)(2)Cl(2)](n) and RuHCl(CO)(PPh(3))(3) with silver-NHC complexes in situ generated from [H(2)L](PF(6))(2) and Ag(2)O afforded [RuL(CH(3)CN)(2)](PF(6))(2) (1), [Ru(2)L(p-cymene)(2)Cl(2)](PF(6))(2) (2), [RuL(CO)(2)](PF(6))(2) (3) and [RuL(PPh(3))(2)](PF(6))(2) (4), respectively. The reactions of 1 towards several N- and P-donors were studied. The treatment of 1 with 1,10-phenanthroline resulted in the substitution of one pyridine and one acetonitrile molecule affording [RuL(phen)(CH(3)CN)](PF(6))(2) (5) as a mixture of two isomers. Reaction of 1,2-bis(diphenylphosphino)ethane (dppe) and 1 gave [RuL(dppe)(CH(3)CN)(2)](PF(6))(2) (7), in which two pyridines were substituted by a dppe ligand trans to two NHC groups. In contrast, reactions of 1 with ethane-1,2-diamine, propane-1,3-diamine and 3,5-dimethyl-1H-pyrazole led to the substitution of acetonitrile and subsequent N-H addition of the C≡N bond of the coordinated acetonitrile yielding [RuL(ethane-1,2-diamine)(N-(2-aminoethyl)acetimidamide)](PF(6))(2) (8), [RuL(propane-1,3-diamine)(N-(3-aminopropyl)acetimidamide)](PF(6))(2) (9) and RuL(1-(3,5-dimethyl-1H-pyrazol-1-yl)ethanimine)(CH(3)CN)](PF(6))(2) (10), respectively.  相似文献   

20.
A series of nickel complexes supported with a tripodal ligand bis(1-methylbenzimidazolyl-2-methyl)amine (L) or bis(1-methylbenzimidazolyl-2-methyl)-10-camphorsulfonamide (L') on a Ni(II) ion were synthesized and fully characterized. The complexes, [LNiCl(micro-Cl)]2.4CH(3)OH (1), [LNi(CH(3)CN)3](ClO4)2.2CH(3)CN (3), and [L2(2)Ni(2)(micro-OAc)3]X (X = Cl- (5) or ClO4- (7)), coordinated with the tridentate L ligand, all possess an octahedral structure at the nickel center; in contrast, the geometry of the complexes, L'NiCl2 (2), [L'Ni(CH(3)CN)3](ClO4)2.2CH(3)CN (4), and L'Ni(OAc)2.0.5Et(2)O (6), employing the L' ligand are either tetrahedral or octahedral. Due to the weak coordinating ability of the sulfonamide group and the steric hindrance of the camphorsulfonyl group of L', the tripodal L' becomes a bidentate ligand in the presence of chloride or acetate groups, which have a stronger electron donating ability than acetonitrile, bound to the nickel center. It is noteworthy that the nuclearity of the nickel complexes can be controlled by the coordination ability of the central nitrogen of the supporting bis-methylbenzimidazolyl ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号