首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linear tetradentate N2Py2 ligands can coordinate to an octahedral FeII center in three possible topologies (cis-alpha, cis-beta, and trans). While for the N,N'-bis(2-pyridylmethyl)-1,2-diaminoethane (bpmen) complex, only the cis-alpha topology has been observed, for N,N'-bis(2-pyridylmethyl)-1,2-diaminocyclohexane (bpmcn) both cis-alpha and cis-beta isomers have been reported. To date, no facile interconversion between cis-alpha and cis-beta topologies has been observed for ironII complexes even at high temperatures. However, this work provides evidence for facile interconversion in solution of cis-alpha, cis-beta, and trans topologies for [Fe(bpmpn)X2] (bpmpn=N,N'-bis(2-pyridylmethyl)-1,3-diaminopropane; X=triflate, CH3CN) complexes. As reported previously, the catalytic behavior of cis-alpha and cis-beta isomers of [Fe(bpmcn)(OTf)2] with respect to olefin oxidation depends dramatically on the geometry adopted by the iron complex. To establish a general pattern of the catalysis/topology dependence, this work presents an extended comparison of the catalytic behavior for oxidation of olefins of a family of [Fe(N2py2)] complexes that present different topologies. 18O labeling experiments provide evidence for a complex mechanistic landscape in which several pathways should be considered. Complexes with a trans topology catalyze only non-water-assisted epoxidation. In contrast, complexes with a cis-alpha topology, such as [Fe(bpmen)X2] and [Fe(alpha-bpmcn)(OTf)2], can catalyze both epoxidation and cis-dihydroxylation through a water-assisted mechanism. Surprisingly, [Fe(bpmpn)X2] and [Fe(beta-bpmcn)(OTf)2] catalyze epoxidation via a water-assisted pathway and cis-dihydroxylation via a non-water-assisted mechanism, a result that requires two independent and distinct oxidants.  相似文献   

2.
The zinc complexes [(L1)(2)Zn(MeOH)(2)](OTf)(2), [(L1)ZnCl(2)], [(L2)ZnCl(2)], [(L2)Zn(OTf)(H(2)O)]OTf and [(Me-bispic)ZnCl(2)] of the ligands N-[(2-pyridyl)methyl]-2,2'-dipyridylamine (L1), N-[bis(2-pyridyl)methyl]-2-pyridylamine (L2) and N-methyl-[bis(2-pyridyl)methyl]amine (Me-bispic) were synthesised and characterised. The first copper(I) complexes of the ligands L1 and L2 were also synthesised and structurally characterised. [(L1)ZnCl(2)] showed unexpected fluxional behaviour in solution and revealed an interesting intramolecular ligand exchange mechanism in the coordination sphere of the zinc ion. Furthermore, strong blue emission was observed under UV-light excitation.  相似文献   

3.
A series of mononuclear iron(II) and zinc(II) complexes of the new chiral Py(ProMe)2 ligand (Py(ProMe)2 = 2,6-bis[[(S)-2-(methyloxycarbonyl)-1-pyrrolidinyl]methyl]pyridine) have been prepared. The molecular geometry in the solid state (X-ray crystal structures) of the complexes [FeCl2(Py(ProMe)2)] (1), [ZnCl2(Py(ProMe)2)] (2), [Fe(OTf)2(Py(ProMe)2)] (3), [Fe(Py(ProMe)2)(OH2)2](OTf)2 (4), and [Zn(OTf)(Py(ProMe)2)](OTf) (5) are reported. They all show a meridional NN'N coordination of the Py(ProMe)2 ligand. The bis-chloride derivatives 1 and 2 represent neutral isostructural five-coordinated complexes with a distorted geometry around the metal center. Unusual seven-coordinate iron(II) complexes 3 and 4 having a pentagonal bipyramidal geometry were obtained using weakly coordinating triflate anions. The reaction of Zn(OTf)2 with the Py(ProMe)2 ligand afforded complex 5 with a distorted octahedral geometry around the zinc center. All complexes were formed as single diastereoisomers. In the case of complexes 3-5, the oxygen atoms of both carbonyl groups of the ligand are also coordinated to the metal. The stereochemistry of the coordinated tertiary amine donors in complexes 3-5 is of opposite configuration as in complexes 1 and 2 as a result of the planar penta-coordination of the ligand Py(ProMe)2. Complexes 1, 2, and 5 have an overall -configuration at their metal center, while the Fe(II) ion in complexes 3 and 4 has the opposite delta-configuration (crystal structures and CD measurements). The magnetic moments of iron complexes 1, 3, and 4 correspond to that of high-spin d6 Fe(II) complexes. The solution structures of complexes 1-5 were characterized by means of UV-vis, IR, conductivity, and CD measurements and their electrochemical behavior. These studies showed that the coordination environment of 1 and 2 observed in the solid state is maintained in solution. In coordinating solvents, the triflate anion (3, 5) or water (4) co-ligands of complexes 3-5 are replaced by solvent molecules with retention of the original pentagonal bipyramidal and octahedral geometry, respectively.  相似文献   

4.
The complexation properties of the ligand bis(3,5-dimethylpyrazol-1-yl)methane (L) towards group 11 metals have been studied. The reaction in a 1 : 1 molar ratio with [Cu(NCMe)4]PF6 or Ag(OTf) complexes gives the mononuclear [CuL(NCMe)]PF6 (1), with crystallographic mirror symmetry, or dinuclear [Ag2(mu-L)2](OTf)2 (2) (OTf = trifluoromethanesulfonate) in which the ligand bridges both silver centres, an unprecedented mode of coordination for this type of ligands. Compound 2 crystallizes with two water molecules and forms a supramolecular structure through classical hydrogen bonding. The reaction in a 2 : 1 ratio affords in both cases the four-coordinated derivatives [ML2]X (M = Cu, X = PF6 (3); Ag, X = OTf 4). The treatment of [Ag(OTf)(PPh3)] with the ligand L gives [AgL(PPh3)]OTf (5). The gold(I) derivative [Au2(C6F5)2(mu-L)] (6) has also been obtained by reaction of L with two equivalents of [Au(C6F5)(tht)]. These complexes present a luminescent behaviour at low temperature; the emissions being mainly intraligand but enhanced after coordination of the metal. Compounds 1-4 have been characterized by X-ray crystallography. DFT studies showed that, in the silver complex 2, coordination of H2O to Ag in the binuclear complex is favoured by formation of a hydrogen-bonding network, involving the triflato anion, and releasing enough energy to allow distortion of the Ag2 framework.  相似文献   

5.
He C  Lippard SJ 《Inorganic chemistry》2001,40(7):1414-1420
A bis(mu-carboxylato)(mu-1,8-naphthyridine)diiron(II) complex, [Fe2(BPMAN)(mu-O2CPhCy)2](OTf)2 (1), was prepared by using the 1,8-naphthyridine-based dinucleating ligand BPMAN, where BPMAN = 2,7-bis[bis(2-pyridylmethyl)aminomethyl]-1,8-naphthyridine. The cyclic voltammogram (CV) of this complex in CH2Cl2 exhibited two reversible one-electron redox waves at +296 mV (DeltaE(p) = 80 mV) and +781 mV (DeltaE(p) = 74 mV) vs Cp2Fe+/Cp2Fe, corresponding to the FeIIIFeII/FeIIFeII and FeIIIFeIII/FeIIIFeII couples, respectively. This result is unprecedented for diiron complexes having no single atom bridge. Dinuclear complexes [Fe2(BPMAN)(mu-OH)(mu-O2CPhCy)](OTf)2 (2) and [Mn2(BPMAN)(mu-O2CPhCy)2](OTf)2 (3) were also synthesized and structurally characterized. The cyclic voltammogram of 2 in CH2Cl2 exhibited one reversible redox wave at -22 mV only when the potential was kept below +400 mV. The CV of 3 showed irreversible oxidation at potentials above +900 mV. Diiron(II) complexes [Fe2(BEAN)(mu-O2CPhCy)3](OTf) (4) and [Fe2(BBBAN)(mu-OAc)2(OTf)](OTf) (6) were also prepared and characterized, where BEAN = 2,7-bis(N,N-diethylaminomethyl)-1,8-naphthyridine and BBBAN = 2,7-bis[2-[2-(1-methyl)benzimidazolylethyl]-N-benzylaminomethyl]-1,8-naphthyridine. The cyclic voltammograms of these complexes were recorded. The M?ssbauer properties of the diiron compounds were studied.  相似文献   

6.
A set of iron(II) complexes of the general formula [Fe(OTf)(2)L(2)] was synthesized in 32 to 78% isolated yields, where L represents a bidentate α-iminopyridine ligand. Four of the iron complexes were characterized structurally, revealing a rich coordination chemistry, because the coordination geometry of the iron complexes strongly depends on the substitution pattern exhibited by the ligands L. The catalytic activity of the new complexes was demonstrated in the oxidation of cyclohexane, activated methylene groups and secondary alcohols to the corresponding ketones utilizing H(2)O(2) and t-BuOOH as the oxidants. The oxidation of activated methylene groups and secondary alcohols to the corresponding ketones with t-BuOOH gave isolated yields between 22 and 91% (4 h, room temperature, 3% catalyst load). The influence of the structure of the ligand on the activity of the corresponding metal complex is also reported. Furthermore, UV-vis experiments were performed which provided evidence for the formation of an [Fe-O-O-t-Bu] intermediate.  相似文献   

7.
A series of iron(III) complexes of the type [Fe(L)Cl3], where L is the variously N-alkyl-substituted bis(pyrid-2-ylmethyl)amine ligand such as bis(pyrid-2-ylmethyl)amine (L1), N,N-bis(pyrid-2-ylmethyl)methylamine (L2), N,N-bis(pyrid-2-ylmethyl)-n-propylamine (L3), N,N-bis(pyrid-2-ylmethyl)-iso-butylamine (L4), N,N-bis(pyrid-2-ylmethyl)-iso-propylamine (L5), N,N-bis(pyrid-2-ylmethyl)cyclohexylamine (L6), and N,N-bis(pyrid-2-ylmethyl)-tert-butylamine (L7), have been isolated and characterized by elemental analysis and spectral and electrochemical methods. The crystal structures of the complexes [Fe(L2)Cl3] 2, [Fe(L3)Cl3] 3, and the complex-substrate adduct [Fe(L5)(TCC)(NO3)] 5a, where TCC2- is the tetrachlorocatecholate dianion, have been determined by single-crystal X-ray crystallography. The complexes [Fe(L2)Cl3] 2 and [Fe(L3)Cl3] 3 possess a distorted octahedral geometry, in which the linear tridentate 3N ligands are cis-facially coordinated to the iron(III) center, and three chloride ions occupy the remaining coordination sites. The replacement of the N-methyl group in 2 by N-n-propyl group as in 3 leads to the formation of the Fe-Npy bonds and also the Fe-Cl bonds located trans to them of different lengths. The catecholate adduct 5a also possesses a distorted octahedral geometry, in which the ligand is cis-facially coordinated to iron(III) center, TCC2- is asymmetrically chelated trans to the two pyridyl moieties of the ligand, and one of the oxygen atoms of the nitrate ion occupies the sixth coordination site. All of the present complexes have been interacted with simple and substituted catechols. The catecholate adducts [Fe(L)(DBC)Cl] and [Fe(L)(DBC)(Sol)]+, where H2DBC is 3,5-di-tert-butylcatechol and Sol=H2O/CH3CN, have been generated in situ, and their spectral and redox properties and dioxygenase activities have been studied in dimethylformamide and dichloromethane solutions. All of the complexes catalyze the cleavage of H2DBC using molecular oxygen to afford both intra- and extradiol cleavage products. The formation of extradiol cleavage products is facilitated by cis-facial coordination of the 3N ligands and availability of vacant coordination site on iron(III) center for dioxygen binding. It is remarkable that the nature of the N-alkyl substituent in 3N ligands controls the regioselectivity of cleavage, with the n-propyl, iso-butyl, iso-propyl, and cyclohexyl groups enhancing the yield of extradiol products (46-68%) in dichloromethane. The rate of oxygenation depends upon the solvent and the Lewis acidity of iron(III) center as modified by the sterically demanding N-alkyl groups-length and degree of substitution. The plot of log (kO2) versus energy of the low-energy DBC2--to-iron(III) LMCT band is linear, demonstrating the importance of the Lewis acidity of the iron(III) center in dictating the rate of the dioxygenase reaction.  相似文献   

8.
The reaction of the lanthanide salts LnI3(thf)4 and Ln(OTf)3 with tris(2-pyridylmethyl)amine (tpa) was studied in rigorously anhydrous conditions and in the presence of water. Under rigorously anhydrous conditions the successive formation of mono- and bis(tpa) complexes was observed on addition of 1 and 2 equiv of ligand, respectively. Addition of a third ligand equivalent did not yield additional complexes. The mono(tpa) complex [Ce(tpa)I3] (1) and the bis(tpa) complexes [Ln(tpa)2]X3 (X = I, Ln = La(III) (2), Ln = Ce(III) (3), Ln = Nd(III) (4), Ln = Lu(III) (5); X = OTf, Ln = Eu(III) (6)) were isolated under rigorously anhydrous conditions and their solid-state and solution structures determined. In the presence of water, 1H NMR spectroscopy and ES-MS show that the successive addition of 1-3 equiv of tpa to triflate or iodide salts of the lanthanides results in the formation of mono(tpa) aqua complexes followed by formation of protonated tpa and hydroxo complexes. The solid-state structures of the complexes [Eu(tpa)(H2O)2(OTf)3] (7), [Eu(tpa)(mu-OH)(OTf)2]2 (8), and [Ce(tpa)(mu-OH)(MeCN)(H2O)]2I4 (9) have been determined. The reaction of the bis(tpa) lanthanide complexes with stoichiometric amounts of water yields a facile synthetic route to a family of discrete dimeric hydroxide-bridged lanthanide complexes prepared in a controlled manner. The suggested mechanism for this reaction involves the displacement of one tpa ligand by two water molecules to form the mono(tpa) complex, which subsequently reacts with the noncoordinated tpa to form the dimeric hydroxo species.  相似文献   

9.
The synthesis of racemic and optically pure ligand L, in which two 6,6'-disubstituted bipyridines are connected by methyleneoxy linkers to the molecular cleft dibenzobicyclo[b,f][3.3.1]nona-5a,6a-diene-6,12-dione, is reported. In the presence of 2 equivalents of zinc(ii) trifluoromethansulfonate (+/-)- undergoes slow reversible coordination over 24 h to form a pair of enantiomeric [2 + 2] metallomacrocycles, [Zn2(+)L2](OTf)(4) and [Zn2(-)L2](OTf)(4) respectively, that contain either two (+)-L ligands or two (-)-L ligands. This assignment was confirmed by independent studies with either (+)-L or (-)-L which formed the same complexes but at a significantly faster rate (3 h), and circular dichroism spectra of [Zn2(+)L2](OTf)(4) and [Zn2(-)L2](OTf)(4) which gave signals of the same intensity with the opposite sign. Treatment of (+/-)-L or optically pure L with copper(I) showed rapid formation of a mixture of oligomers as well as the [2 + 2] metallomacrocycle. The complex Zn2L2(OTf)(4) exhibits slow exchange between two species on the NMR time scale at room temperature. The results are consistent with the formation of a library of metal complexes in which the zinc(ii) binds initially to the most accessible bipyridyl binding sites in (+/-)-. Equilibration over several hours results in self-recognition of enantiomeric ligands to form a pair of enantiomeric metallomacrocycles, which have been tentatively assigned as having the helical configuration. Slow exchange is attributed to the preference for both metal centres to adopt 6-coordinate geometries involving the linker oxygens, but are limited to exchanging 5-coordinate complexes due to the shape of the cleft and the short linker.  相似文献   

10.
Tetradentate bis(aminophenolate) ligands H(2)salan(X) and H(2)bapen(X) (where X refers to the para-phenolate substituent = H, Me, F, Cl) react with [Fe{N(SiMe(3))(2)}(2)] to form iron(II) complexes, which in the presence of suitable donor ligands L (L = pyridine or THF) can be isolated as the complexes [Fe(salan(X))(L)(2)] and [Fe(bapen(X))(L)(2)]. In the absence of donor ligands, either mononuclear complexes, for example, [Fe(salan(tBu,tBu))], or dinuclear complexes of the type [Fe(salan(X))](2) are obtained. The dynamic coordination behavior in solution of the complexes [Fe(salan(F))(L)(2)] and [Fe(bapen(F))(L)(2)] has been investigated by VT (1)H and (19)F NMR spectroscopy, which has revealed equilibria between isomers with different ligand coordination topologies cis-α, cis-β and trans. Exposure of the iron(II) salan(X) complexes to O(2) results in the formation of oxo-bridged iron(III) complexes of the type [{Fe(salan(X))}(2)(μ-O)] or [{Fe(salan(X))(L)}(2)(μ-O)]. The lack of catalytic activity of the iron(II) salan and bapen complexes in the oxidation of cyclohexane with H(2)O(2) as the oxidant is attributed to the rapid formation of stable and catalytically inactive oxo-bridged iron(III) complexes.  相似文献   

11.
Multidentate naphthyridine-based ligands were used to prepare a series of diiron(II) complexes. The compound [Fe(2)(BPMAN)(mu-O(2)CPh)(2)](OTf)(2) (1), where BPMAN = 2,7-bis[bis(2-pyridylmethyl)aminomethyl]-1,8-naphthyridine, exhibits two reversible oxidation waves with E(1/2) values at +310 and +733 mV vs Cp(2)Fe(+)/Cp(2)Fe, as revealed by cyclic voltammetry. Reaction with O(2) or H(2)O(2) affords a product with optical and M?ssbauer properties that are characteristic of a (mu-oxo)diiron(III) species. The complexes [Fe(2)(BPMAN)(mu-OH)(mu-O(2)CAr(Tol))](OTf)(2) (2) and [Fe(2)(BPMAN)(mu-OMe)(mu-O(2)CAr(Tol))](OTf)(2) (3) were synthesized, where Ar(Tol)CO(2)(-) is the sterically hindered ligand 2,6-di(p-tolyl)benzoate. Compound 2 has a reversible redox wave at +11 mV, and both 2 and 3 react with O(2), via a mixed-valent Fe(II)Fe(III) intermediate, to give final products that are also consistent with (mu-oxo)diiron(III) species. The paddle-wheel compound [Fe(2)(BBAN)(mu-O(2)CAr(Tol))(3)](OTf) (4), where BBAN = 2,7-bis(N,N-dibenzylaminomethyl)-1,8-naphthyridine, reacts with dioxygen to yield benzaldehyde via oxidative N-dealkylation of a benzyl group on BBAN, an internal substrate. In the presence of bis(4-methylbenzyl)amine, the reaction also produces p-tolualdehyde, revealing oxidation of an external substrate. A structurally related compound, [Fe(2)(BEAN)(mu-O(2)CAr(Tol))(3)](OTf) (5), where BEAN = 2,7-bis(N,N-diethylaminomethyl)-1,8-naphthyridine, does not undergo N-dealkylation, nor does it facilitate the oxidation of bis(4-methylbenzyl)amine. The contrast in reactivity of 4 and 5 is attributed to a difference in accessibility of the substrate to the diiron centers of the two compounds. The M?ssbauer spectroscopic properties of the diiron(II) complexes were also investigated.  相似文献   

12.
The copper coordination chemistry of two phthalazine-based ligands of differing steric bulk was investigated. A family of dinuclear complexes were prepared from reactions of [Cu(2)(bdptz)(MeCN)(2)](OTf)(2), 1(OTf)(2), where bdptz = 1,4-bis(2,2'-dipyridylmethyl)phthalazine. Treatment of 1(OTf)(2) with NaO(2)CCH(3) afforded the class I mixed-valent compound [Cu(2)(bdptz)(2)](OTf)(3), 2(OTf)(3), by disproportionation of Cu(I). Compound 2(OTf)(3) displays an electron paramagnetic resonance spectrum, with g( parallel ) = 2.25 (A( parallel ) = 169 G) and g( perpendicular ) = 2.06, and exhibits a reversible redox wave at -452 mV versus Cp(2)Fe(+)/Cp(2)Fe. The complex [Cu(2)(bdptz)(micro-OH)(MeCN)(2)](OTf)(3), 3(OTf)(3), was prepared by chemical oxidation of 1 with AgOTf, and exposure of 1 to dioxygen afforded [Cu(2)(bdptz)(micro-OH)(2)](2)(OTs)(4), 4(OTs)(4), which can also be obtained directly from [Cu(H(2)O)(6)](OTs)(2). In compound [Cu(2)(bdptz)(micro-vpy)](OTf)(2), 5(OTf)(2), where vpy = 2-vinylpyridine, the vpy ligand bridges the two Cu(I) centers by using both its pyridine nitrogen and the olefin as donor functionalities. The sterically hindered compounds [Cu(2)(Ph(4)bdptz)(MeCN)(2)](OTf)(2), 6(OTf)(2), and [Cu(2)(Ph(4)bdptz)(micro-O(2)CCH(3))](OTf), 7(OTf), were also synthesized, where Ph(4)bdptz = 1,4-bis[bis(6-phenyl-2-pyridyl)methyl]phthalazine. Complexes 1-7 were characterized structurally by X-ray crystallography. In 6 and 7, the four phenyl rings form a hydrophobic pocket that houses the acetonitrile and acetate ligands. Complex 6 displays two reversible redox waves with E(1/2) values of +41 and +516 mV versus Cp(2)Fe(+)/Cp(2)Fe. Analysis of oxygenated solutions of 6 by electrospray ionization mass spectrometry reveals probable aromatic hydroxylation of the Ph(4)bdptz ligand. The different chemical and electrochemical behavior of 1 versus 6 highlights the influence of a hydrophobic binding pocket on the stability and reactivity of the dicopper(I) centers.  相似文献   

13.
The octahedral Ru(II) amine complexes [TpRu(L)(L')(NH(2)R)][OTf] (L = L' = PMe(3), P(OMe)(3) or L = CO and L' = PPh(3); R = H or (t)Bu) have been synthesized and characterized. Deprotonation of the amine complexes [TpRu(L)(L')(NH(3))][OTf] or [TpRu(PMe(3))(2)(NH(2)(t)Bu)][OTf] yields the Ru(II) amido complexes TpRu(L)(L')(NH(2)) and TpRu(PMe(3))(2)(NH(t)Bu). Reactions of the parent amido complexes or TpRu(PMe(3))(2)(NH(t)Bu) with phenylacetylene at room temperature result in immediate deprotonation to form ruthenium-amine/phenylacetylide ion pairs, and heating a benzene solution of the [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] ion pair results in the formation of the Ru(II) phenylacetylide complex TpRu(PMe(3))(2)(C[triple bond]CPh) in >90% yield. The observation that [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] converts to the Ru(II) acetylide with good yield while heating the ion pairs [TpRu(L)(L')(NH(3))][PhC(2)] yields multiple products is attributed to reluctant dissociation of ammonia compared with the (t)butylamine ligand (i.e., different rates for acetylide/amine exchange). These results are consistent with ligand exchange reactions of Ru(II) amine complexes [TpRu(PMe(3))(2)(NH(2)R)][OTf] (R = H or (t)Bu) with acetonitrile. The previously reported phenyl amido complexes TpRuL(2)(NHPh) [L = PMe(3) or P(OMe)(3)] react with 10 equiv of phenylacetylene at elevated temperature to produce Ru(II) acetylide complexes TpRuL(2)(C[triple bond]CPh) in quantitative yields. Kinetic studies indicate that the reaction of TpRu(PMe(3))(2)(NHPh) with phenylacetylene occurs via a pathway that involves TpRu(PMe(3))(2)(OTf) or [TpRu(PMe(3))(2)(NH(2)Ph)][OTf] as catalyst. Reactions of 1,4-cyclohexadiene with the Ru(II) amido complexes TpRu(L)(L')(NH(2)) (L = L' = PMe(3) or L = CO and L' = PPh(3)) or TpRu(PMe(3))(2)(NH(t)Bu) at elevated temperatures result in the formation of benzene and Ru hydride complexes. TpRu(PMe(3))(2)(H), [Tp(PMe(3))(2)Ru[double bond]C[double bond]C(H)Ph][OTf], [Tp(PMe(3))(2)Ru=C(CH(2)Ph)[N(H)Ph]][OTf], and [TpRu(PMe(3))(3)][OTf] have been independently prepared and characterized. Results from solid-state X-ray diffraction studies of the complexes [TpRu(CO)(PPh(3))(NH(3))][OTf], [TpRu(PMe(3))(2)(NH(3))][OTf], and TpRu(CO)(PPh(3))(C[triple bond]CPh) are reported.  相似文献   

14.
In this work, two thiourea ligands bearing a phosphine group in one arm and in the other a phenyl group (T2) or 3,5-di-CF3 substituted phenyl ring (T1) have been prepared and their coordination to Au and Ag has been studied. A different behavior is observed for gold complexes, a linear geometry with coordination only to the phosphorus atom or an equilibrium between the linear and three-coordinated species is present, whereas for silver complexes the coordination of the ligand as P^S chelate is found. The thiourea ligands and their complexes were explored against different cancer cell lines (HeLa, A549, and Jurkat). The thiourea ligands do not exhibit relevant cytotoxicity in the tested cell lines and the coordination of a metal triggers excellent cytotoxic values in all cases. In general, data showed that gold complexes are more cytotoxic than the silver compounds with T1, in particular the complexes [AuT1(PPh3)]OTf, the bis(thiourea) [Au(T1)2]OTf and the gold-thiolate species [Au(SR)T1]. In contrast, with T2 better results are obtained with silver species [AgT1(PPh3)]OTf and the [Ag(T1)2]OTf. The role played by the ancillary ligand bound to the metal is important since it strongly affects the cytotoxic activity, being the bis(thiourea) complex the most active species. This study demonstrates that metal complexes derived from thiourea can be biologically active and these compounds are promising leads for further development as potential anticancer agents.  相似文献   

15.
Four new iron(III) complexes of the bis(phenolate) ligands N,N-dimethyl-N',N'-bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine [H2(L1)], N,N-dimethyl-N',N'-bis(2-hydroxy-4-nitrobenzyl)ethylenediamine [H2(L2)], N,N'-dimethyl-N,N'-bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine [H2(L3)], and N,N'-dimethyl-N,N'-bis(2-hydroxy-4-nitrobenzyl)ethylenediamine [H2(L4)] have been isolated and studied as structural and functional models for the intradiol-cleaving catechol 1,2-dioxygenases (CTD). The complexes [Fe(L1)Cl] (1), [Fe(L2)(H2O)Cl] (2), [Fe(L3)Cl] (3), and [Fe(L4)(H2O)Cl] (4) have been characterized using absorption spectral and electrochemical techniques. The single-crystal X-ray structures of the ligand H2(L1) and the complexes 1 and 2 have been successfully determined. The tripodal ligand H2(L1) containing a N2O2 donor set represents the metal-binding region of the iron proteins. Complex 1 contains an FeN2O2Cl chromophore with a novel trigonal bipyramidal coordination geometry. While two phenolate oxygens and an amine nitrogen constitute the trigonal plane, the other amine nitrogen and chloride ion are located in the axial positions. In contrast, 2 exhibits a rhombically distorted octahedral coordination geometry for the FeN2O3Cl chromophore. Two phenolate oxygen atoms, an amine nitrogen atom, and a water molecule are located on the corners of a square plane with the axial positions being occupied by the other nitrogen atom and chloride ion. The interaction of the complexes with a few monodentate bases and phenolates and differently substituted catechols have been investigated using absorption spectral and electrochemical methods. The effect of substituents on the phenolate rings on the electronic spectral features and FeIII/FeII redox potentials of the complexes are discussed. The interaction of the complexes with catecholate anions reveals changes in the phenolate to iron(III) charge-transfer band and also the appearance of a low-energy catecholate to iron(III) charge-transfer band similar to catechol dioxygenase-substrate complexes. The redox behavior of the 1:1 adducts of the complexes with 3,5-di-tert-butylcatechol (H2DBC) has been also studied. The reactivities of the present complexes with H2DBC have been studied and illustrated. Interestingly, only 2 and 4 catalyze the intradiol-cleavage of H2DBC, the rate of oxygenation being much faster for 4. Also 2, but not 4, yields an extradiol cleavage product. The reactivity of the complexes could be illustrated not on the basis of the Lewis acidity of the complexes alone but by assuming that the product release is the rate-determining phase of the catalytic reaction.  相似文献   

16.
The intramolecular gas-phase reactivity of four oxoiron(IV) complexes supported by tetradentate N(4) ligands (L) has been studied by means of tandem mass spectrometry measurements in which the gas-phase ions [Fe(IV) (O)(L)(OTf)](+) (OTf=trifluoromethanesulfonate) and [Fe(IV) (O)(L)](2+) were isolated and then allowed to fragment by collision-induced decay (CID). CID fragmentation of cations derived from oxoiron(IV) complexes of 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane (tmc) and N,N'-bis(2-pyridylmethyl)-1,5-diazacyclooctane (L(8) Py(2) ) afforded the same predominant products irrespective of whether they were hexacoordinate or pentacoordinate. These products resulted from the loss of water by dehydrogenation of ethylene or propylene linkers on the tetradentate ligand. In contrast, CID fragmentation of ions derived from oxoiron(IV) complexes of linear tetradentate ligands N,N'-bis(2-pyridylmethyl)-1,2-diaminoethane (bpmen) and N,N'-bis(2-pyridylmethyl)-1,3-diaminopropane (bpmpn) showed predominant oxidative N-dealkylation for the hexacoordinate [Fe(IV) (O)(L)(OTf)](+) cations and predominant dehydrogenation of the diaminoethane/propane backbone for the pentacoordinate [Fe(IV) (O)(L)](2+) cations. DFT calculations on [Fe(IV) (O)(bpmen)] ions showed that the experimentally observed preference for oxidative N-dealkylation versus dehydrogenation of the diaminoethane linker for the hexa- and pentacoordinate ions, respectively, is dictated by the proximity of the target C?H bond to the oxoiron(IV) moiety and the reactive spin state. Therefore, there must be a difference in ligand topology between the two ions. More importantly, despite the constraints on the geometries of the TS that prohibit the usual upright σ trajectory and prevent optimal σ(CH) -σ*?z?2 overlap, all the reactions still proceed preferentially on the quintet (S=2) state surface, which increases the number of exchange interactions in the d block of iron and leads thereby to exchange enhanced reactivity (EER). As such, EER is responsible for the dominance of the S=2 reactions for both hexa- and pentacoordinate complexes.  相似文献   

17.
A series of manganese(II), iron(II) and cobalt(II) bis(triflate) complexes containing linear tetradentate bis(imine) and bis(amine) ligands with a biphenyl bridge have been synthesized. The twist in the ligand backbone due to the biphenyl unit leads in the case of the bis(imine) ligands (1 and 2) containing sp2 hybridised N donors, to a distorted cis-alpha coordination geometry, whereas in the case of the biphenyl- and biphenylether-bridged bis(amine) ligands (7 - 9 and 12), a trans coordination geometry is observed. The catalytic properties of the complexes for the oxidation of cyclohexane, using H2O2 as the oxidant, have been evaluated. Only the iron complexes show any catalytic activity under the conditions used, but the low conversions and selectivies observed indicate that these catalysts lead predominantly to free radical auto-oxidation.  相似文献   

18.
The ligand 6,6"bis(4-methoxyphenyl)-4'-phenyl-2,2':6',2"terpyridine (2) has been prepared and characterized; deprotection using pyridinium chloride leads to the formation of 6,6"bis(4-hydroxyphenyl)-4'-phenyl-2,2':6',2"terpyridinium chloride ([H3]Cl). Treatment of the latter with 3-(2-(2-bromoethoxy)ethoxy)prop-1-ene under basic conditions yields ligand 4 containing pendant, alkene-terminated chains. Whereas direct complexation of 4 with ruthenium(II) proved problematical, the homoleptic complexes [Fe(2)(2)][PF(6)](2) and [Ru(2)(2)][PF(6)](2) were prepared in good to moderate yields. In the solid state, both complexes exhibit multiple face-to-face π-stacking of arene and pyridine rings which influences the coordination geometry about the metal ion. Consequential weakening of the ligand field results in [Fe(2)(2)][PF(6)](2) being high-spin. Variable temperature solution (1)H NMR spectroscopic studies confirm the iron(ii) centre remains high-spin between 200 and 295 K. The paramagnetically shifted (1)H NMR spectrum exhibits signals in the range δ 109.7 to -66.5 ppm and has been fully assigned. Paramagnetic relaxation enhancement (PRE) has been used to correlate the observed proton line-widths to the distances of the protons from the metal centre and these are in good agreement with the Fe···H separations observed in the solid state. The [Fe(2)(2)](2+) ion undergoes two dynamic processes (i) rotation of the pendant phenyl rings which is fast on the NMR timescale at 200 K, and (ii) twisting and sliding of the aromatic rings of the tpy and anisyl units which interconverts the two enantiomers of [Fe(2)(2)](2+) at 295 K.  相似文献   

19.
Iron(II) complexes of the type [Fe(L)(NCS)2] with tetradentate ligands L are well known to show spin crossover properties. However, this behavior is quite sensitive in regard to small changes of the ligand system. Starting from the thoroughly investigated complex [Fe(tmpa)(NCS)2] [tmpa = tris(2‐pyridylmethyl)amine, also abbreviated as tpa in the literature] we modified the ligand by increasing systematically the chelate ring sizes from 5 to 6 thus obtaining complexes [Fe(pmea)(NCS)2], [Fe(pmap)(NCS)2], and [Fe(tepa)(NCS)2] [pmea = N,N‐bis[(2‐pyridyl)methyl]‐2‐(2‐pyridyl)ethylamine, pmap = N,N‐bis[2‐(2‐pyridyl)ethyl]‐(2‐pyridyl)methylamine, and tepa = tris[2‐(2‐pyridyl)ethyl]amine]. All complexes were structurally characterized and spin crossover properties were investigated using Mößbauer spectroscopy, magnetic measurements, and IR/Raman analyses. The results demonstrated that only the iron complexes with tmpa and pmea showed spin crossover properties, whereas the complexes with the ligands pmap and tepa only formed high spin complexes. Furthermore, DFT calculations supported these findings demonstrating again the strong influence of ligand environment. Herein the effect of increasing the chelate ring sizes in iron(II) isothiocyanato complexes with tetradentate tripyridyl‐alkylamine ligands is clearly demonstrated.  相似文献   

20.
A new family of N-capped tripodal NO(3) proligands N,N-bis(2-hydroxy-3,5-di-tert-butylbenzyl)-N-(2'-hydroxy-5'-R-phenyl)amine [H(3)(L(n))] [when R= Me, n = 1; R= (t)Bu, n = 2; R = Cl, n = 3] with different substituents in one of the aryl rings and N,N-bis(2-hydroxy-3-tert-butylbenzyl)-N-(2'-hydroxy-5'-methylphenyl)amine [H(3)(L(4))] were synthesised. The preparation of a new pentadentate proligand N-methyl-N,N',N'-tris(2-hydroxy-3,5-di-tert-butylbenzyl)ethane-1,2-diamine [H(3)(L(5))] with an N(2)O(3) donor set is also reported. Reaction of the proligands [H(3)(L(n))] (n = 1-4) with iron(iii) chloride in the presence of base (triethylamine) and 1-methylimidazole (1-Meim) as co-ligand led to the formation of iron complexes of the type [Fe(L(n))(1-Meim)] (n = 1-4) () respectively, while treatment of the trilithium salt of [H(3)(L(5))] with iron(iii) chloride afforded [Fe(L(5))] (). All complexes were structurally characterised by X-ray crystallography. In complexes , the ligands form five- and six-membered chelate rings with the iron centres which have distorted trigonal bipyramidal geometry with an N(2)O(3) coordination environment. Complex adopts a similar distorted trigonal bipyramidal geometry also with N(2)O(3) coordination around the iron centre. The catalytic activity of these iron complexes towards epoxidation of styrene was examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号