首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Excited electronic states of the anion radical of para-benzoquinone were studied by time dependent density functional theory (TD-DFT) including bulk solvent effects by the polarizable continuum model (PCM). The computed vertical excitation energies for the first four low-lying doublet states are in good agreement with previous post-Hartree–Fock computations. Geometry optimization of excited states and inclusion of solvent effects lead to a remarkable agreement between computed adiabatic transition energies and experimental band maxima. Together with their specific interest, the results point out the reliability of TD-DFT/PCM approach for valence excitations and the need to take geometry relaxation and solvent effects into the proper account for a meaningful comparison between computed and experimental absorption spectra.  相似文献   

2.
The catalytic role of CO2 in reactions of ONOO- with guanine, leading to the formation of the mutagenic species 8-oxoguanine (8-oxoG) and 8-nitroguanine anion (8-nitroG-), was investigated by considering the reactions of nitrosoperoxycarbonate anion (ONOOCO2-), an adduct of ONOO- and CO2, with guanine at the B3LYP/6-31G** and B3LYP/AUG-cc-pVDZ levels of density functional theory in gas phase. In order to study bulk solvent effect, single-point energy calculations in aqueous media were carried out for all the species occurring in the reactions at the B3LYP/AUG-cc-pVDZ level of theory, by use of the polarizable continuum model (PCM). Vibrational frequency analysis was performed, and zero-point-energy (ZPE)-corrected total energies and Gibbs free energy changes at 298.15 K were obtained. The genuineness of the calculated transition states was confirmed by visually examining the vibrational modes and also by intrinsic reaction coordinate (IRC) calculations. The reaction between ONOOCO2- and guanine occurring through four different mechanisms leads to the formation of 8-oxoG or its anion, while the reaction between the same two species occurring through a different scheme leads to the formation of 8-nitroG-. It has been shown that the presence of a water molecule along with ONOOCO2- would not affect the reaction mechanisms significantly. Structures of the reactant complexes, product complexes and barrier energies involved in the reactions reveal that CO2 acts as a catalyst for the reaction between ONOO- and guanine. The cause of the catalytic action of CO2 is mainly due to intermediacy of the CO3 radical anion and NO2 radical into which ONOOCO2- is fragmented while reacting with guanine. The relative stabilities of the different product complexes suggest that the mutation caused by ONOO- in the presence of CO2 would mainly involve 8-oxoG.  相似文献   

3.
The alkaline hydrolysis reaction of ethylene phosphate (EP) has been investigated using a supermolecule model, in which several explicit water molecules are included. The structures and single-point energies for all of the stationary points are calculated in the gas phase and in solution at the B3LYP/6-31++G(df,p) and MP2/6-311++G(df,2p) levels. The effect of water bulk solvent is introduced by the polarizable continuum model (PCM). Water attack and hydroxide attack pathways are taken into account for the alkaline hydrolysis of EP. An associative mechanism is observed for both of the two pathways with a kinetically insignificant intermediate. The water attack pathway involves a water molecule attacking and a proton transfer from the attacking water to the hydroxide in the first step, followed by an endocyclic bond cleavage to the leaving group. While in the first step of the hydroxide attack pathway the nucleophile is the hydroxide anion. The calculated barriers in aqueous solution for the water attack and hydroxide attack pathways are all about 22 kcal/mol. The excellent agreement between the calculated and observed values demonstrates that both of the two pathways are possible for the alkaline hydrolysis of EP.  相似文献   

4.
A method that combines quantum mechanics (QM), typically a solute, the effective fragment potential (EFP) discrete solvent model, and the polarizable continuum model is described. The EFP induced dipoles and polarizable continuum model (PCM) induced surface charges are determined in a self-consistent fashion. The gradients of these two energies with respect to molecular coordinate changes are derived and implemented. In general, the gradients can be formulated as simple electrostatic forces and torques among the QM nuclei, electrons, EFP static multipoles, induced dipoles, and PCM induced charges. Molecular geometry optimizations can be performed efficiently with these gradients. The formulas derived for EFPPCM can be generally applied to other combined molecular mechanics and continuum methods that employ induced dipoles and charges.  相似文献   

5.
Possible radical reaction products issuing from H-atom addition to cytosine have been characterized and analyzed by means of a comprehensive quantum mechanical approach including density functional computations (B3LYP), together with simulation of the solvent by the polarizable continuum model (PCM), and averaging of spectroscopic properties over the most important vibrational motions. The hyperfine couplings of the semirigid 5,6-dihydrocytos-6yl radical computed at the optimized geometry are in good agreement with their experimental counterparts. On the other hand, vibrational averaging is mandatory for obtaining an effectively planar structure for the 5,6-dihydrocytos-5yl radical with the consequent equivalence of beta-hydrogens. Finally, only proper consideration of environmental effects restores the agreement between computed and experimental couplings for the base anion protonated at N3.  相似文献   

6.
The reaction mechanisms of carcinogenic methylating agent iodomethane (MeI) with keto and enol tautomers of thymine (K- and E-thymine) were studied by using the B3LYP/6-311+G (d, p) method in water phase. The solvent effects were examined using the polarizable continuum model (PCM). Specifically, PCM single-point calculations at the same level of theory were performed in acetone and CCl4 that represent a range in nonpolarity. The calculated results show that the reaction of K-thymine with MeI is a two-step mechanism, whereas that of E-thymine is a one-step mechanism. Our calculations reveal that K-thymine is appreciably more stable than the enol form in the water phase or in the two solvents. The K- and E-form reaction barriers are 135.6 and 222.1 kJ/mol, respectively in water phase. These findings indicate that the reactions mentioned above could not occur efficiently in biological media in the absence of catalyst. Our conclusions are in agreement with the previous studies on the reactions of guanine with methyl chloride and methyl bromide.  相似文献   

7.
通过理论计算推测NH2-,NH3和NH4+在水溶液第一溶剂化层中与之直接作用的水分子分别为2,4和4个,并采用离散-连续模型计算了NH2-,NH3,NH3和NH4+在水溶液中的溶剂化自由能.结果表明,由于离散-连续模型在从头算水平考虑了溶质分子与第一溶剂化层溶剂分子之间的作用,能更准确地描述溶剂化作用.此外,采用更加符合溶液中真实情况的溶剂化构型,能得到更准确的溶剂化性质.  相似文献   

8.
Antioxidants scavenge reactive oxygen species and, therefore, are vitally important in the living cells. The antioxidant properties of eupatilin have recently been reported. In this article, the reactions of eupatilin with the hydroxyl radical (OH?) in solution are studied using density functional theory calculations and the polarizable continuum model. Three mechanisms are considered including: sequential electron proton transfer (SEPT), sequential proton loss electron transfer (SPLET), and hydrogen abstraction (HA). Three solvents with different polarities, that is, benzene, methanol, and water, are used to investigate the effect of the environment on the mechanisms. The relative Gibbs free energies and enthalpies corresponding to different mechanisms are calculated. Our results show that SEPT is thermodynamically favored in aqueous solution. Once the eupatilin anion is produced, the second step in SPLET mechanism is thermodynamically favored in methanol and water. The HA mechanism is thermodynamically favored in gas, benzene, methanol, and water. This mechanism is more energetically favorable to occur in a more polar solvent. The natural bond orbital charges and spin densities as well as the singly occupied molecular orbital are then analyzed. It is concluded that the HA process is governed by proton coupled electron transfer mechanism. The attack of the radical takes place preferentially at position 7 of eupatilin. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
The mechanism of the degenerate 1,5-hydride shift in 2,6-dimethyl-2-heptyl cations has been investigated using ab initio MP2 and density functional theory (DFT) hybrid (B3LYP) calculations. The potential-energy profile for the 1,5-hydride shift consists of three minima corresponding to two equivalent acyclic carbocations and one symmetrically mu-hydrido-bridged carbocation, while two equivalent unsymmetrically hydrido-bridged carbocations were located as transition-state structures. The calculated relative energy differences between acyclic carbocations and symmetrically mu-hydrido-bridged structure are significantly affected by introduction of alkyl and (CH2)n-substituents at the C4 position of the 2,6-dimethyl-2-heptyl cation structure. DFT self-consistent isodensity polarizable continuum method (SCI-PCM) and MP2 PCM continuum methods have been used to calculate the effect of solvation on geometries and relative energies of the species involved in the 1,5-hydride shift. It is found that relative energies of acyclic and mu-hydrido-bridged carbocation structures as well as the energy barriers for 1,5-hydride shifts are in accord with experimental data if solvation effects are taken into account.  相似文献   

10.
Radical anions are present in several chemical processes, and understanding the reactivity of these species may be described by their thermodynamic properties. Over the last years, the formation of radical ions in the gas phase has been an important issue concerning electrospray ionization mass spectrometry studies. In this work, we report on the generation of radical anions of quinonoid compounds (Q) by electrospray ionization mass spectrometry. The balance between radical anion formation and the deprotonated molecule is also analyzed by influence of the experimental parameters (gas-phase acidity, electron affinity, and reduction potential) and solvent system employed. The gas-phase parameters for formation of radical species and deprotonated species were achieved on the basis of computational thermochemistry. The solution effects on the formation of radical anion (Q(?-)) and dianion (Q(2-)) were evaluated on the basis of cyclic voltammetry analysis and the reduction potentials compared with calculated electron affinities. The occurrence of unexpected ions [Q+15](-) was described as being a reaction between the solvent system and the radical anion, Q(?-). The gas-phase chemistry of the electrosprayed radical anions was obtained by collisional-induced dissociation and compared to the relative energy calculations. These results are important for understanding the formation and reactivity of radical anions and to establish their correlation with the reducing properties by electrospray ionization analyses.  相似文献   

11.
We present a comparative study of solvent effects on the 15N NMR shielding constants and the lowest electronic excitation energy (n --> pi*) in the three diazines (pyrazine, pyrimidine, and pyridazine) in aqueous solution. This solvent is modeled using either a polarizable continuum model (PCM) or a discrete polarizable model (DPM). We analyze the results obtained with the two models in terms of differences/similarities in the reaction field produced at the solute. The PCM reaction field is found to be quite sensitive to the dimension of the cavity and so are the molecular properties. However, constructing the cavity so that the DPM and PCM reaction fields become similar in magnitude leads to quite similar results for the studied molecular properties modeling the solvent using either the PCM or the DPM. Compared to experimental data, the most accurate predicted results are obtained by describing the closest water molecules at the same level of sophistication as that of the solute, whereas the bulk solvent may be described using either PCM or MM. Finally, a comparison with geometry-optimized clusters seems to show that it is important to check potential deficiencies in the force field in order for this to treat hydrogen bonding in a consistent manner.  相似文献   

12.
Reduction and oxidation potentials of a series of parasubstituted phenylselanyl radicals, XC(6)H(4)Se(*), have been measured using photomodulated voltammetry in acetonitrile. The thermodynamic significance of these data was substantiated through a study of the oxidation process of the pertinent selenolates in linear sweep voltammetry. Both the reduction and the oxidation potentials correlate linearly with the Hammett substituent coefficients sigma and sigma(+) leading in the latter case to slopes, rho(+), of 2.5 and 3.8, respectively. Through comparison of these slopes with those published previously for the O- and S-centered analogues, it is revealed that the pi-interaction becomes progressively smaller as the size of the radical center increases in the order O, S, and Se. Solvation energies of the pertinent selenolates and selanylium ions have been extracted from thermochemical cycles incorporating the measured electrode potentials for XC(6)H(4)Se(*) as well as electron affinities and ionization potentials obtained from theoretical calculations at the B3LYP/6-31+G(d) level. The extracted data show the expected overall substituent dependency for both kinds of ions; that is, the absolute value of the solvation energy decreases as the charge becomes more delocalized. The data have also been compared with solvation energies computed using the polarizable continuum model (PCM). Interestingly, we find that, while the model seems to work well for selenolates, it underestimates the solvation of selanylium ions in acetonitrile by as much as 25 kcal mol(-)(1). These large deviations are ascribed to the fact that the PCM method does not take specific solvent effects into account as it treats the solvent as a continuum described solely by its dielectric constant. Gas-phase calculations show that the arylselanylium ions can coordinate covalently to one or two molecules of acetonitrile in strong Ritter-type adducts. When this strong interaction is included in the solvation energy calculations by means of a combined supermolecule and PCM approach, the experimental data are reproduced within a few kcal mol(-)(1). Although the energy difference of the singlet and triplet spin states of the arylselanylium ions is small for the gas-phase structures, the singlet cation is undoubtedly the dominating species in solution because the triplet cation lacks the ability to form covalent bonds.  相似文献   

13.
14.
15.
《Vibrational Spectroscopy》2007,43(2):333-340
Harmonic and anharmonic vibrations of free nicotinamide (NIA) and picolinamide (PIA) molecules together with their hydrogen bonded complexes H2O–NIA and H2O–PIA have been studied by means of density functional method. The calculation results of the vibrational spectra of free molecules have been investigated and are compared to the available experimental spectra. The vibrational wavenumbers of both molecules have also been calculated by polarizable continuum model (PCM) that represents the solvent as a polarizable continuum and places the solute in a cavity within the solvent (water is chosen as the solvent in this study). The results of PCM calculations and the H2O–NIA, H2O–PIA complexes, are used to investigate the H-bonding interactions of both molecules with the water molecule. The harmonic wavenumbers have been scaled by proper factors obtained by comparing the observed versus calculated wavenumbers and it is shown that anharmonic corrections on the vibrational spectra provided a better agreement between the observed and calculated wavenumbers compared to the results obtained by scaling factor method.  相似文献   

16.
Free energies of hydration (FEH) have been computed for 13 neutral and nine ionic species as a difference of theoretically calculated Gibbs free energies in solution and in the gas phase. In‐solution calculations have been performed using both SCIPCM and PCM polarizable continuum models at the density functional theory (DFT)/B3LYP and ab initio Hartree–Fock levels with two basis sets (6‐31G* and 6‐311++G**). Good linear correlation has been obtained for calculated and experimental gas‐phase dipole moments, with an increase by ~30% upon solvation due to solute polarization. The geometry distortion in solution turns out to be small, whereas solute polarization energies are up to 3 kcal/mol for neutral molecules. Calculation of free energies of hydration with PCM provides a balanced set of values with 6‐31G* and 6‐311++G** basis sets for neutral molecules and ionic species, respectively. Explicit solvent calculations within Monte Carlo simulations applying free energy perturbation methods have been considered for 12 neutral molecules. Four different partial atomic charge sets have been studied, obtained by a fit to the gas‐phase and in‐solution molecular electrostatic potentials at in‐solution optimized geometries. Calculated FEH values depend on the charge set and the atom model used. Results indicate a preference for the all‐atom model and partial charges obtained by a fit to the molecular electrostatic potential of the solute computed at the SCIPCM/B3LYP/6‐31G* level. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

17.
Nitrosyl cation (NO+) generating reaction HONO + H+ → NO+ + H2O has been theoretically investigated by B3LYP and high‐electron‐correlation QCISD methods with 6‐31G (d,p) basis set. The solvent effects on the geometries, reaction path properties, energies, thermodynamic, and kinetic characters in four solvents (benzene, tetrahydrofuran, acetonitrile, and water) have been calculated using self‐consistent reaction field (SCRF) approach with the polarizable continuum model (PCM). The results show that the activation energy barriers and the relative energies of the products are decreased with increase of the polarities of the solvents, and the reaction is favored in polar solvents thermodynamically and kinetically. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
Electrogenerated radical anions in room-temperature ionic liquids   总被引:2,自引:0,他引:2  
The sequential two-electron reduction of benzaldehyde to the radical anion and dianion species in 1-butyl-3-methylimidazolium triflimide and 1-butyl-1-methylpyrrolidinium triflimide is reported. In 1-butyl-1-methylpyrrolidinium triflimide, the heterogeneous electrochemistry and follow-up chemical reactivity are essentially equivalent to that in conventional molecular-solvent-based electrolytes where no interaction with the media is observed. In 1-butyl-3-methylimmidazolium triflimide, reduction occurs via the same two heterogeneous processes; however, the apparent heterogeneous rate constants are smaller by ca. 1 order of magnitude which leads to quasi-reversible electrochemical behavior. Since the bulk viscosities of the liquids are similar, the slower heterogeneous kinetics are attributed to local interfacial viscosity due to local ordering in the imidazolium-based medium. Also, a dramatic anodic shift in the reduction potentials is observed in 1-butyl-3-methylimidazolium triflimide media that is attributed to a stabilizing interaction of the radical anion and dianion species with the imidazolium cation.  相似文献   

19.
Semiempirical molecular orbital theory has been used to study the effects of solvation by acetonitrile on the Stevens rearrangement of methylammonium formylmethylide to 2-aminopropanal. Three methods of solvation have been used to investigate both the electrostatic and specific solvent–solute effects of solvation: a supermolecule calculation involving the complete geometry optimization of up to six solvent molecules about the solute, the conductor-like screening model (COSMO) polarizable continuum method which allows for geometry optimization of the solute in a solvent defined by its dielectric constant, and a hybrid method in which up to five solvent molecules are incorporated inside the solute cavity and complete geometry optimization of the complex is carried out within the polarizable continuum. A comparison of the calculated geometries, rearrangement activation energies, and enthalpies of solvation from these approaches is presented, and the explicit versus bulk solvation effects are discussed. The overall effect of all methods for incorporating solvation effects is that the radical pair pathway is perferred over the concerted mechanism. © 1996 by John Wiley & Sons, Inc.  相似文献   

20.
Raman spectroscopy was used to examine the interactions of the free O-H bonds in n-octanol and ethanol with the organic solvents carbon tetrachloride (CCl(4)), cyclohexane, and benzene. These spectra reveal that the solvents CCl(4) and cyclohexane have a small effect on the free O-H peak of alcohols, whereas benzene as a solvent significantly red-shifts the free O-H band. Calculated spectra were generated via MP2/6-31G* calculations and the B3LYP/6-31+G**//MP2/6-31G*-derived Boltzmann populations of each ethanol complex and are consistent with the experimental results. Additional spectra were calculated using Boltzmann populations derived from single-point energies at the polarizable continuum model (PCM) level with the B3LYP/6-31+G** level of theory to take overall solvent effects into account, and these simulated spectra are also largely consistent with the experimental results. Analysis of the computational results reveals a lengthening of the O-H bond from the O-H interaction with the delocalized electronic structure of benzene as well as a bimodal distribution of the free O-H peak of the alcohol/benzene mixtures due to two distinctly different types of alcohol/benzene complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号