首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimental data on the pressure dependence of unit cell parameters for the gas hydrates of ethane (cubic structure I, pressure range 0–2 GPa), xenon (cubic structure I, pressure range 0–1.5 GPa) and the double hydrate of tetrahydrofuran+xenon (cubic structure II, pressure range 0–3 GPa) are presented. Approximation of the data using the cubic Birch–Murnaghan equation, P=1.5B0[(V0/V)7/3?(V0/V)5/3], gave the following results: for ethane hydrate V0=1781 Å3, B0=11.2 GPa; for xenon hydrate V0=1726 Å3, B0=9.3 GPa; for the double hydrate of tetrahydrofuran+xenon V0=5323 Å3, B0=8.8 GPa. In the last case, the approximation was performed within the pressure range 0–1.5 GPa; it is impossible to describe the results within a broader pressure range using the cubic Birch–Murnaghan equation. At the maximum pressure of the existence of the double hydrate of tetrahydrofuran+xenon (3.1 GPa), the unit cell volume was 86 % of the unit cell volume at zero pressure. Analysis of the experimental data obtained by us and data available from the literature showed that 1) the bulk modulus of gas hydrates with classical polyhedral structures, in most cases, are close to each other and 2) the bulk modulus is mainly determined by the elasticity of the hydrogen‐bonded water framework. Variable filling of the cavities with guest molecules also has a substantial effect on the bulk modulus. On the basis of the obtained results, we concluded that the bulk modulus of gas hydrates with classical polyhedral structures and existing at pressures up to 1.5 GPa was equal to (9±2) GPa. In cases when data on the equations of state for the hydrates were unavailable, the indicated values may be recommended as the most probable ones.  相似文献   

2.
The crystal structure and stability of NaTh2F9 have been studied using thermal analysis, powder X-ray diffraction at atmospheric conditions, and single-crystal X-ray diffraction at high pressure. Sodium dithorium fluoride is stable at least up to 5.0 GPa at room temperature and to 954 K at ambient pressure. In contrast to earlier investigations, which have reported the structure to be cubic (, Z=4), we observe a tetragonal distortion of the lattice. The actual crystal structure (, Z=4) is twinned and composed of corner-sharing distorted ThF9 tricapped trigonal prisms and distorted NaF6 octahedra. The twinning element is a three-fold axis from cubic symmetry. The ThF9 polyhedra are rigid and it is the volume changes of the octahedra around the Na atoms that have the major contribution to the bulk compressibility. The zero-pressure bulk modulus B0 and the unit-cell volume at ambient pressure V0 are equal to 99(6) GPa and 663.1(1.0) Å3, respectively, with the fixed first pressure derivative of the bulk modulus B′=4.00. An inspection of the known crystalline phases in the system NaF-ThF4 reveals that their bulk moduli increase with the increasing ThF4 content.  相似文献   

3.
The compressibilities of disordered pyrochlores NaCaMg2F7 and NaCdZn2F7 (both , Z=8) have been studied with X-ray single-crystal and powder diffraction using diamond anvil cells to 6.5 and 9.0 GPa at room temperature, respectively. The compressibility data are fitted with the Murnaghan equations of state. The zero-pressure bulk modulus B0 and the unit-cell volume at ambient pressure V0 (for the fixed first pressure derivative of the bulk modulus B′=4.00) are equal to 83(2) GPa and 1107.12(1.33) Å3 for NaCdZn2F7 and to 83(5) GPa and 1079.29(2.62) Å3 for NaCaMg2F7. Upon decreasing the unit-cell volume, the positional x parameter of the F(2) atom increases in NaCdZn2F7 but is constant in NaCaMg2F7. In both cases, the (Na,Cd)F8 and (Na,Ca)F8 cubes become more regular and are softer than the ZnF6 and MgF6 octahedra, respectively. Both materials are structurally stable at least to the respective highest pressures reached in this study. These observations are compared to the high-pressure behavior of oxide pyrochlores.  相似文献   

4.
The phase transition of NaH from NaCl- to CsCl-type structure is investigated by an ab initio plane-wave pseudopotential density functional theory method with the norm-conserving pseudopotential scheme in the frame of the generalized gradient approximation correction; the isothermal bulk modulus and its first and second pressure derivatives of the NaCl- and CsCl-type structures under high pressure and temperature are obtained through the quasi-harmonic Debye model. The phase transition obtained from the usual condition of equal enthalpies occurs at the pressure of 32 GPa, which is consistent with the experimental and other calculated values. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the dependences of cell volume V and lattice constant a on temperature T at zero pressure, the isothermal bulk modulus B0 and its pressure derivatives B0′and B0″ on pressure P along isotherms 0, 300, and 600 K, are also successfully obtained.  相似文献   

5.
The effect of pressure on the crystal structure of thallium selenate (Tl2SeO4) (Pmcn, Z=4), containing the Tl+ cations with electron lone pairs, has been studied with single-crystal X-ray diffraction in a diamond anvil cell up to 3.64 GPa at room temperature. No phase transition has been observed. The compressibility data are fitted by a Murnaghan equation of state with the zero-pressure bulk modulus B0=29(1) GPa and the unit-cell volume at ambient pressure V0=529.6(8) Å3 (B′=4.00). Tl2SeO4 is the least compressible in the c direction, while the pressure-induced changes of the a and b lattice parameters are quite similar. These observations can be explained by different pressure effects on the nine- and 11-fold coordination polyhedra around the two non-equivalent Tl atoms. The SeO42− tetrahedra are not rigid units and become more distorted. Their contribution to the compressibility is small. The effect of pressure on the isotypical oxide materials A2TO4 with the β-K2SO4 structure is discussed. It appears that the presence of electron lone pairs on the Tl+ cation does not seem to influence the compressibility of Tl2SeO4.  相似文献   

6.
The evolution of the unit-cell parameters of CaZrO3 perovskite, an orthorhombic perovskite belonging to space group Pbnm, have been determined to a pressure of 8.7 GPa at room temperature using single-crystal X-ray diffraction measurements. A fit of a third-order Birch-Murnaghan equation of state to the pressure-volume data yields values of V0=258.04(2) Å3, KT0=154(1) GPa and K0′=5.9(3). Although CaZrO3 perovskite does not exhibit any phase transitions in this pressure range, the compression of the structure is anisotropic with [010] approximately 20% less compressible than either [100] or [001]. Compressional moduli for the unit cell parameters are: Ka0=142(1) GPa and Ka0′=4.4(2), Kb0=177(2) GPa and Kb0′=9.4(5), Kc0=146(2) GPa and Kc0′=5.4(4). Comparison with other orthorhombic Ca-oxide perovskites shows that there is systematic increase in compressional anisotropy with increasing distortion from cubic symmetry.  相似文献   

7.
Sr2BUO6 double perovskites with B′=Mn, Fe, Ni, Zn have been prepared in polycrystalline form by solid-state reaction, in air or reducing conditions. These new materials have been studied by X-ray diffraction (XRD), magnetic susceptibility and magnetization measurements. The room-temperature crystal structure is monoclinic (space group P21/n), and contains alternating B′O6 and UO6 octahedra sharing corners, tilted along the three pseudocubic axes according to the Glazer notation aab+. The magnetic measurements show a spontaneous magnetic ordering below TN=21 K for B′=Mn, Ni, and TC=150 K for B′=Fe. From a Curie-Weiss fit, the effective paramagnetic moment for B′=Mn (5.74 μB/f.u.) and B′=Ni(3.51 μB/f.u.) are significantly different from the corresponding spin-only moments for the divalent cations, suggesting the possibility of a partial charge disproportionation B2++U6+B3++U5+, also accounting for plausible ferrimagnetic interactions between B′ and U sublattices. The strong curvature of the reciprocal susceptibility for B′=Fe precludes a Curie-Weiss fit but also suggests the presence of ferrimagnetic interactions in this compound. This charge disproportionation effect is also supported by the observed B′O distances, which are closer to the expected values for high-spin, trivalent Mn, Fe and Ni cations.  相似文献   

8.
The novel intermetallic compound WAl2 crystallizes with space group P6422 and lattice parameters a=4.7422(1) Å, c=6.6057(2) Å. The crystal structure was solved from single-crystal X-ray diffraction data. WAl2 was found to be the first aluminide that is isotypic with CrSi2. A high-pressure powder X-ray diffraction study showed its stability up to at least 31.5(1) GPa. The bulk modulus was calculated by fitting a third-order Birch-Murnaghan equation of state to the pressure-volume data as K0=168(11) GPa and its pressure derivative K′=7.7(1.0). Partially covalent bonding between W and Al atoms was indicated by means of the electron localization function (ELF) and explains the anisotropic compression behavior. Quantum chemical calculations identify WAl2 as a potential high-temperature phase.  相似文献   

9.
Phase transitions in MgAl2O4 were examined at 21-27 GPa and 1400-2500 °C using a multianvil apparatus. A mixture of MgO and Al2O3 corundum that are high-pressure dissociation products of MgAl2O4 spinel combines into calcium-ferrite type MgAl2O4 at 26-27 GPa and 1400-2000 °C. At temperature above 2000 °C at pressure below 25.5 GPa, a mixture of Al2O3 corundum and a new phase with Mg2Al2O5 composition is stable. The transition boundary between the two fields has a strongly negative pressure-temperature slope. Structure analysis and Rietveld refinement on the basis of the powder X-ray diffraction profile of the Mg2Al2O5 phase indicated that the phase represented a new structure type with orthorhombic symmetry (Pbam), and the lattice parameters were determined as a=9.3710(6) Å, b=12.1952(6) Å, c=2.7916(2) Å, V=319.03(3) Å3, Z=4. The structure consists of edge-sharing and corner-sharing (Mg, Al)O6 octahedra, and contains chains of edge-sharing octahedra running along the c-axis. A part of Mg atoms are accommodated in six-coordinated trigonal prism sites in tunnels surrounded by the chains of edge-sharing (Mg, Al)O6 octahedra. The structure is related with that of ludwigite (Mg, Fe2+)2(Fe3+, Al)(BO3)O2. The molar volume of the Mg2Al2O5 phase is smaller by 0.18% than sum of molar volumes of 2MgO and Al2O3 corundum. High-pressure dissociation to the mixture of corundum-type phase and the phase with ludwigite-related structure has been found only in MgAl2O4 among various A2+B3+2O4 compounds.  相似文献   

10.
Metastable high-pressure transformations in germanium nitride (α- and β-Ge3N4 polymorphs) have been studied by energy- and angle-dispersive synchrotron X-ray diffraction at high pressures in a diamond anvil cell. Between P=22 and 25 GPa, the phenacite-structured β-Ge3N4 phase (P63/m) undergoes a 7% reduction in unit-cell volume. The densification is primarily concerned with the a-axis parameter, in a plane normal to the hexagonal c-axis. Based on results of previous LDA calculations and Raman spectroscopic studies, we propose that the structural collapse is due to transformation into a new metastable polymorph (δ-Ge3N4) that has a unit-cell symmetry based upon P3, that is related to the low-pressure β-Ge3N4 phase by concerted displacements of N atoms away from special symmetry sites in the plane normal to the c-axis. No such transformation occurs for α-Ge3N4, due to the different stacking of linked GeN4 layers. All three polymorphs (α-, β- and δ-Ge3N4) are based on tetrahedrally coordinated Ge atoms, unlike the spinel-structured γ-Ge3N4 phase, that contains octahedrally coordinated Ge4+. Experimentally determined bulk modulus values for α-Ge3N4 (K0=165(10) GPa, K0′=3.7(4)) and β-Ge3N4 (K0=185(7) GPa, K0′=4.4(5)) are in excellent agreement with theoretical predictions. The bulk modulus for the new δ-Ge3N4 polymorph is only determined above the β-δ transition pressure (P=24 GPa); K=161(20) GPa, assuming K′=4. Above 45 GPa, both α- and δ-Ge3N4 polymorphs become amorphous, as determined by X-ray diffraction and Raman scattering.  相似文献   

11.
ScB2 single crystals were grown by inductive floating zone melting. The ScB2 structure was refined on single crystal and powder data, the latter obtained from parts of single crystals which were prepared by controlled crushing. The ScB2 structure corresponds to the AlB2 structure type, sp. gr. P6/mmm, No. 191 (R1=0.0191, wR2=0.0474), lattice parameters are equal to a=0.314820(3) nm, c=0.351483(5) nm, c/a=1.117, X-ray density is 3.670 g/cm3. The measured hydrostatic density is 3.666 g/cm3 which correspond to the Sc0.99B2 composition. The ScB2 Young modulus value is equal to 480 GPa and the Debye characteristic temperature is 1020 K.  相似文献   

12.
The high-pressure behavior of TlTeVO5 has been investigated in situ using single-crystal X-ray diffraction in a diamond anvil cell. This material is structurally stable at least to 7.11 GPa, the highest pressure reached in this study. TlTeVO5 is twinned both at ambient and high pressures (Pna21, Z=4). The twinning law relating the two individuals is equivalent to a rotation of approximately 3° around the direction. Within errors, no changes in the orientation of the two individuals are observed as a function of pressure. The refined twin volume fractions do not change within estimated standard deviations, either.The material is the most and the least compressible along the c and a axes, respectively. The P-V data could be fitted by a Murnaghan equation of state with B0=32(1) GPa, V0=504.4(4) Å3, and B′=7.97(43). The most important effect of pressure is the increase of the coordination numbers for the Tl and Te atoms. The Tl-O distance nearly parallel to the [001] direction is the most sensitive structural feature to pressure, resulting in the anisotropic compressibility. The long Te-O distances decrease, while the short ones are constant or even become slightly longer. Such a pressure-induced change of the coordination is interpreted as due to increasing uniformity of the oxygen atoms surrounding the cations and to decreasing activity of the electron lone pairs. The change is accompanied by an increase of the pseudosymmetry of the structure with respect to the centrosymmetric space group Pnna.  相似文献   

13.
Two new ternary chromium sulfides, Ba3CrS5, and Ba3Cr2S6 were synthesized by the reaction of sulfur, barium sulfide, and chromium metal under a high pressure of 5 GPa at 1200°C. Ba3CrS5 crystallized in the hexagonal space group P63cm (No. 185) with a=9.1208(3) Å, c=6.1930(3) Å, V=446.17(3) Å3, and Z=6. It had a column structure with one-dimensional chains of [CrS3] composed of face-sharing CrS6 octahedra surrounded with Ba2+ ions. Additional S columns surrounded with Ba ions were running along with the CrS6 columns. Ba3Cr2S6 crystallized in the trigonal space group R-3c (No. 167) with a=11.8179(7) Å, c=12.796(1) Å, V=1547.7(2) Å3, and Z=6. The structure of Ba3Cr2S6 also contains [CrS3] chains but the chains are composed of octahedral and trigonal prismatic CrS6 units, which are alternately stacked in a face-sharing manner. The formal charges of Cr ions in Ba3CrS5 and Ba3Cr2S6 are 4+ and 3+, respectively.  相似文献   

14.
We have investigated the magnetic properties of iron mixed-valence complexes, (n-CnH2n+1)4N[FeIIFeIII(dto)3] (dto = C2O2S2, n = 3, 5), in which not only a ferromagnetic transition but also a novel charge transfer phase transition (CTPT) take place [1]. This CTPT can be observed under ambient pressure for n = 3, while it appears abruptly above 0.5 GPa for n = 5 [2]. Recently, we have measured the muon spin relaxation (μSR) for the CTPT of n = 3, which revealed the dynamical process of electron-transfer between FeII and FeIII and its frequency was estimated at about 0.1 MHz [3]. To investigate the pressure induced CTPT for n = 5, we carried out the μSR measurement for n = 5 at 150 K between 0.30 and 0.64 GPa with the 4He gas-operated pressure system. The asymmetry of the muon spin relaxation for n = 5 with Cu-Be pressure cell was almost constant up to 0.55 GPa, while it rapidly decreased with increasing pressure above 0.60 GPa. This result shows that the applied pressure causes the spin fluctuation due to the CTPT, which induces the decrease of the asymmetry of muon spin relaxation. This experiment can correctly decide the phase transition pressure from the absence to the appearance of the CTPT for n = 5.  相似文献   

15.
N-2-(3-picolyl)-N′-phenylthiourea, 3PicTuPh, monoclinic, P21/n, a=7.617(2) b=7.197(5), c=22.889(5) Å, β=94.63(4)°, V=1250.7(1) Å3 and Z=4; N-2-(4-picolyl)-N′-phenylthiourea, 4PicTuPh, triclinic, P-1, a=7.3960(5), b=7.9660(12), c=21.600(3) Å, α=86.401(4), β=84.899(8), γ=77.769(8)°, V=1237.5(3) Å3 and Z=4; N-2-(5-picolyl)-N′-phenylthiourea, 5PicTuPh, monoclinic, P21/c, a=14.201(1), b=4.905(3), c=17.689(3) Å, β=91.38(1)°, V=1231.8(7) Å3 and Z=4; N-2-(6-picolyl)-N′-phenylthiourea, 6PicTuPh, monoclinic, C2/c2, a=14.713(1), b=9.367(1), c=18.227(1) Å, β=92.88(1)°, V=2515.5(1) Å3 and Z=8 and N-2-(4,6-lutidyl)-N′-phenylthiourea, 4,6LutTuPh, monoclinic, C2/c, a=11.107(2), b=11.793(2), c=20.084(4) Å, β=96.10(3)°, V=2616(1) Å3 and Z=8. Intramolecular hydrogen bonding between N′H and the pyridyl nitrogen and intermolecular hydrogen bonding involving the thione sulfur are affected by substitution of the pyridine ring, as is the planarity of the molecule. 1H NMR studies in CDCl3 show the NH′ hydrogen resonance considerably downfield from other resonances in the spectrum for each thiourea.  相似文献   

16.
Compression behaviour of a potassium aluminogermanate with a gismondine framework topology (K-AlGe-GIS) was studied using in-situ high-pressure synchrotron X-ray powder diffraction. In contrast to the potassium gallosilicate analogue (K-GaSi-GIS), no elastic anomaly due to pressure-induced hydration and/or cation relocation was observed in K-AlGe-GIS. The Birch-Murnaghan fit to the pressure-volume data results in a bulk modulus of B0=31(1) GPa. The derived linear-axial compressibilities (i.e., βa=0.0065(5) GPa−1, βb=0.0196(4) GPa−1, βc=0.0081(7) GPa−1) indicate that the b-axis, normal to the 8-ring channels, is about three times more compressible than the a and c axes, parallel to the elliptical 8-ring channels. As a consequence a gradual flattening of the so-called ‘double crankshaft’ structural building units of the gismondine framework is observed. In K-AlGe-GIS, this flattening occurs almost linear with pressure, whereas it is nonlinear in the GaSi-analogue due to structural changes of the water-cation assembly under hydrostatic pressures.  相似文献   

17.
Single crystals of Sr3B2SiO8 were obtained by solid-state reaction of stoichiometric mixture at 1200 °C. The crystal structure of the compound has been solved by direct methods and refined to R1=0.064 (wR=0.133). It is orthorhombic, Pnma, a=12.361(4), b=3.927(1), c=5.419(1) Å, V=263.05(11) Å3. The structure contains zigzag pseudo-chains running along the b axis and built up from corner sharing (Si,B)−O polyhedra. Boron and silicon are statistically distributed over one site with their coordination strongly disordered. Sr atoms are located between the chains providing three-dimensional linkage of the structure.The formation of Sr3B2SiO8 has been studied using annealing series in air at 900-1200 °C. According powder XRD, the probe contains pure Sr3B2SiO8 over 1100 °C. The compound is not stable below 900 °C. In the pseudobinary Sr2B2O5-Sr3B2SiO8 system a new series of solid solutions Sr3−xB2Si1−xO8−3x (x=0-0.9) have been crystallized from melt. The thermal behavior of Sr3B2SiO8 was investigated using powder high-temperature X-ray diffraction (HTXRD) in the temperature range 20-900 °C. The anisotropic character of thermal expansion has been observed: αa= −1.3, αb=23.5, αc=13.9, and αV=36.1×10−6 °C−1 (25 °C); αa= −1.3, αb=23.2, αc=5.2, and αV=27.1×10−6 °C−1 (650 °C). Maximal thermal expansion of the structure along of the chain direction [0 1 0] is caused by the partial straightening of chain zigzag. Hinge mechanism of thermal expansion is discussed.  相似文献   

18.
Single crystals of a new compound, BaBi2B4O10 were grown by cooling a melt with the stoichiometric composition. The crystal structure of the compound has been solved by direct methods and refined to R1=0.049 (wR=0.113) on the basis of 1813 unique observed reflections (|Fo|>4σ|Fo|). It is monoclinic, space group P21/c, a=10.150(2), b=6. 362(1), c=12.485(2) Å, β=102.87(1)o, V=786.0(2) Å3, Z=4. The structure is based upon anionic thick layers that are parallel to (001). The layers can be described as built from alternating novel borate [B4O10]8− chains and bismuthate [Bi2O5]4− chains extended along b-axis. The borate chains are composed of [B3O8]7− triborate groups of three tetrahedra and single triangles with a [BO2] radical. The borate chains are interleaved along the c-axis with rows of the Ba2+ cations so that the Ba atoms are located within the layers. The layers are connected by two nonequivalent Ba-O bonds as well as by two equivalent Bi-O bonds with bond valences in the range of 0.2-0.3 v.u.Thermal expansion of BaBi2B4O10 studied by high-temperature X-ray powder diffraction in the temperature range of 20-700 °C (temperature step 30-35 °C) is highly anisotropic. While the b and c unit-cell parameters increase almost linearly on heating, temperature dependencies of a parameter and β monoclinic angle show nonlinear behavior. As a result, on heating orientation of thermal expansion tensor changes, and bulk thermal expansion increases from 20×10−6 °C−1 at the first heating stage up to 57×10−6 °C−1 at 700 °C that can be attributed to the increase of thermal mobility of heavy Bi3+ and Ba2+ cations.  相似文献   

19.
The complex [(η6-C6Me6)Ru(μ-Cl)Cl]21 react with sodium salts of β-diketonato ligands in methanol to afford the oxygen bonded neutral complexes of the type [(η6-C6Me6)Ru(κ2-O,O′-R1COCHCOR2)Cl] {R1, R2 = CH3 (2), CH3, C6H5 (3), C6H5 (4), OCH3 (5), OC2H5 (6)}. Complex 4 with AgBF4 yields the γ-carbon bonded ruthenium dimeric complex 7. Complex 4 also reacts with tertiary phosphines and bridging ligands to yield complexes of the type [(η6-C6Me6)Ru(κ2-O,O′-C6H5COCHCOC6H5)(L)]+ (L = PPh3 (8), PMe2Ph (9)) and [{η6-C6Me6)Ru(κ2-O,O′-C6H5COCHCOC6H5)}2(μ-L)] L = 4,4′-bipyridine (4,4′-bipy) (11), 1,4-dicyanobenzene (DCB) (12) and pyrazine (Pz) (13). Complexes 2-4 react with sodium azide to yield neutral complexes [(η6-C6Me6)Ru(κ2-O,O′-R1COCHCOR2)N3] {R1, R2 = CH3 (10a), CH3, C6H5 (10b), C6H5 (10c). All these complexes were characterized by FT-IR and FT-NMR spectroscopy as well as analytical data. The molecular structures of complexes [(η6-C6Me6)Ru(κ2-O,O′CH3COCH-COC6H5)Cl] (3) and [(η6-C6Me6)Ru(κ2-O,O′-C6H5COCHCOC6H5] (4) were established by single crystal X-ray diffraction studies. The complex 3 crystallizes in the triclinic space group, [a = 7.9517(4), b = 9.0582(4) and c = 14.2373(8) Å, α = 88.442(3)°, β = 76.6.8(3)° and γ = 81.715(3)°. V = 987.17(9) Å3, Z = 2]. Complex 4 crystallizes in the monoclinic space group, P21/c [a = 7.5894(8), b = 20.708(2) and c = 29.208(3) Å,β = 92.059(3)° V = 4587.5(9) Å3, Z = 8].  相似文献   

20.
New ternary rare-earth metal boride carbides RE25B14C26 (RE=Pr, Nd) and Nd25B12C28 were synthesized by co-melting the elements. Nd25B12C28 is stable up to 1440 K. RE25B14C26 (RE=Pr, Nd) exist above 1270 K. The crystal structures were investigated by means of single-crystal X-ray diffraction. Nd25B12C28: space group P, a=8.3209(7) Å, b=8.3231(6) Å, c=29.888(2) Å, α=83.730(9)°, β=83.294(9)°, γ=89.764(9)°. Pr25B14C26: space group P21/c, a=8.4243(5) Å, b=8.4095(6) Å, c=30.828(1) Å, β=105.879(4)°, V=2100.6(2) Å3, (R1=0.048 (wR2=0.088) from 2961 reflections with Io>2σ(Io)); for Nd25B14C26 space group P21/c, Z=2, a=8.3404(6) Å, b=8.3096(6) Å, c=30.599(2) Å, β=106.065(1)°. Their structures consist of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with cumulene-like molecules [B2C4]6− and [B3C3]7−, nearly linear [BC2]5− and bent [BC2]7− units and isolated carbon atoms. Structural and theoretical analysis suggests the ionic formulation for RE25B14C26: (RE3+)25[B2C4]6−([B3C3]7−)2([BC2]5−)4([BC2]7−)2(C4−)4·5e and for Nd25B12C28: (Nd3+)25([B2C4]6−)3([BC2]5−)4([BC2]7−)2(C4−)4·7e. Accordingly, extended Hückel tight-binding calculations indicate that the compounds are metallic in character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号