首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Reaction of tri-lacunary Keggin tungstoarsenate with osmium complex Os(dmso)4Cl2 under mild condition led to the formation of a novel Os (II)-supported tungstoarsenate Na5(NH4)[HAsW7O28Os(dmso)3]·15H2O (1a). Single-crystal X-ray diffraction analysis shows that compound 1a crystallizes in the monoclinic space group P21/c (no. 14) with a=14.9166(12) Å, b=23.6935(19) Å, c=16.5349(14) Å, β=92.7950(10)°, V=5836.9(8) Å3, Z=4 with R1=0.0453. The crystal structure reveals two features: (1) the polyanion [HAsW7O28Os(dmso)3]6− (1) consists of a Os(dmso)3 unit linked to a tungstoarsenate fragment {HAsW7O28} via two Os-O-W bonds and one Os-O-As bond resulting in an assembly with Cs symmetry, which represents a novel mode of Os-coordination to a polyoxoanion framework; (2) 3D architecture assembled by the polyanion 1 and sodium linkers. In addition, the compound 1a was well characterized by the multinuclear NMR (13C, 1H), IR spectroscopy, UV-vis spectroscopy, elemental analysis, and cyclic voltammetry (CV).  相似文献   

2.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with 2,3-bis(2-pyridyl)pyrazine in dichloromethane solution at reflux temperature afforded the structural dirhenium isomers [Re2(CO)8(C14H10N4)] (1 and 2), and the complex [Re2(CO)8(C14H10N4)Re2(CO)8] (3). In 1, the ligand is σ,σ′-N,N′-coordinated to a Re(CO)3 fragment through pyridine and pyrazine to form a five-membered chelate ring. A seven-membered ring is obtained for isomer 2 by N-coordination of the 2-pyridyl groups while the pyrazine ring remains uncoordinated. For 2, isomers 2a and 2b are found in a dynamic equilibrium ratio [2a]/[2b]  =  7 in solution, detected by 1H NMR (−50 °C, CD3COCD3), coalescence being observed above room temperature. The ligand in 3 behaves as an 8e-donor bridge bonding two Re(CO)3 fragments through two (σ,σ′-N,N′) interactions. When the reaction was carried out in refluxing tetrahydrofuran, complex [Re2(CO)6(C14H10N4)2] (4) was obtained in addition to compounds 1-3. The dinuclear rhenium derivative 4 contains two units of the organic ligand σ,σ′-N,N′-coordinated in a chelate form to each rhenium core. The X-ray crystal structures for 1 and 3 are reported.  相似文献   

3.
The substitution of the acetate ligand in [Ru2Cl(DPhF)3(O2CMe)] (DPhF = N,N′-diphenylformamidinate) by the pentafluorobenzoate group gives the complex [Ru2Cl(DPhF)3(O2CC6F5)(OH2)] (1), and the reaction of 1 with AgSO3CF3 leads to the compound [Ru2(DPhF)3(O2CC6F5)(OH2)2]SO3CF3 (2). The low donor character of the pentafluorobenzoate ligand compared to the acetate group decreases the electron density of the Ru25+ unit which permits ligands to bond at both axial positions of the diruthenium moiety. The use of the [Au(CN)2] group yields the new complex {[Ru2(DPhF)3(O2CC6F5)][Au(CN)2]} (3). Complexes 13 are characterized by elemental analysis, 19F{1H} NMR, IR and electronic spectroscopy, mass spectrometry and variable-temperature magnetic measurements. The crystal structure of 2·H2O is also reported. The magnetic properties of complex 1 is in accordance with the ground-state configuration σ2π4δ2(π*δ*)3. In contrast, the slope of representation of the magnetic moment towards temperature in complex 2 indicates a gradual transition from essentially high spin (S = 3/2) to low spin (S = 1/2) configuration.  相似文献   

4.
Two uranyl tellurates, AgUO2(HTeO5) (1) and Pb2UO2(TeO6) (2), were synthesized under hydrothermal conditions and were structurally, chemically, and spectroscopically characterized. 1 crystallizes in space group Pbca, a=7.085(2) Å, b=11.986(3) Å, c=13.913(4) Å, V=1181.5(5) Å3, Z=8; 2 is in P2(1)/c, a=5.742(1) Å, b=7.789(2) Å, c=7.928(2) Å, V=90.703(2) Å3, and Z=2. These are the first structures reported for uranyl compounds containing tellurate. The U6+ cations are present as (UO2)2+ uranyl ions that are coordinated by O atoms to give pentagonal and square bipyramids in compounds 1 and 2, respectively. The structural unit in 1 is a sheet consisting of chains of edge-sharing uranyl pentagonal bipyramids that are one bipyramid wide, linked through the dimers of TeO6 octahedra. In 2, uranyl square bipyramids share each of their equatorial vertices with different TeO6 octahedra, giving a sheet with the autunite-type topology. Sheets in 1 and 2 are connected through the low-valence cations that are located in the interlayer region. The structures of 1 and 2 are compared to those of uranyl compounds containing octahedrally coordinated cations.  相似文献   

5.
Reactions of 1,4-dibromo-2,5-difluorobenzene with two equivalents of lithium diisopropylamide at low temperature (T < −90 °C) followed by a quench with a slight excess of ClPPh2 afford 1,4-dibromo-2,5-bis(diphenylphosphino)-3,6-difluorobenzene (1) in good yields. Reacting 1 with two equivalents of BuLi followed by a quench with a slight excess of ClPR2 yield novel 1,2,4,5-tetrakis(phosphino)-3,6-difluorobenzenes 1,4-(PPh2)2-2,5-(PR2)2-C6F2 (R = Ph (2a); R = iPr (2b); R = Et (2c)) in moderate yields. Compounds 1 and 2a-c were characterized by multinuclear NMR spectroscopy and elemental analyses. In addition, molecular structures of 2a-c have been determined by single crystal X-ray crystallography. Phosphorus atoms of PPh2/PR2 substituents in 2a-c are displaced from the plane of the central phenyl ring due to steric interactions with neighboring groups.  相似文献   

6.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed.  相似文献   

7.
The solid-state reactions of UO3 and WO3 with M2CO3 (M=Na, K, Rb) at 650°C for 5 days result, accordingly the starting stoichiometry, in the formation of M2(UO2)(W2O8) (M=Na (1), K (2)), M2(UO2)2(WO5)O (M=K (3), Rb (4)), and Na10(UO2)8(W5O20)O8 (5). The crystal structures of compounds 2, 3, 4, and 5 have been determined by single-crystal X-ray diffraction using Mo(Kα) radiation and a charge-coupled device detector. The crystal structures were solved by direct methods and Fourier difference techniques, and refined by a least-squares method on the basis of F2 for all unique reflections. For (1), unit-cell parameters were determined from powder X-ray diffraction data. Crystallographic data: 1, monoclinic, a=12.736(4) Å, b=7.531(3) Å, c=8.493(3) Å, β=93.96(2)°, ρcal=6.62(2) g/cm3, ρmes=6.64(1) g/cm3, Z=4; 2, orthorhombic, space group Pmcn, a=7.5884(16) Å, b=8.6157(18) Å, c=13.946(3) Å, ρcal=6.15(2) g/cm3, ρmes=6.22(1) g/cm3, Z=8, R1=0.029 for 80 parameters with 1069 independent reflections; 3, monoclinic, space group P21/n, a=8.083(4) Å, b=28.724(5) Å, c=9.012(4) Å, β=102.14(1)°, ρcal=5.83(2) g/cm3, ρmes=5.90(2) g/cm3, Z=8, R1=0.037 for 171 parameters with 1471 reflections; 4, monoclinic, space group P21/n, a=8.234(1) Å, b=28.740(3) Å, c=9.378(1) Å, β=104.59(1)°, ρcal=6.13(2) g/cm3,  g/cm3, Z=8, R1=0.037 for 171 parameters with 1452 reflections; 5, monoclinic, space group C2/c, a=24.359(5) Å, b=23.506(5) Å, c=6.8068(14) Å, β=94.85(3)°, ρcal=6.42(2) g/cm3,  g/cm3, Z=8, R1=0.036 for 306 parameters with 5190 independent reflections. The crystal structure of 2 contains linear one-dimensional chains formed from edge-sharing UO7 pentagonal bipyramids connected by two octahedra wide (W2O8) ribbons formed from two edge-sharing WO6 octahedra connected together by corners. This arrangement leads to [UW2O10]2− corrugated layers parallel to (001). Owing to the unit-cell parameters, compound 1 probably contains similar sheets parallel to (100). Compounds 3 and 4 are isostructural and the structure consists of bi-dimensional networks built from the edge- and corner-sharing UO7 pentagonal bipyramids. This arrangement creates square sites occupied by W atoms, a fifth oxygen atom completes the coordination of W atoms to form WO5 distorted square pyramids. The interspaces between the resulting [U2WO10]2− layers parallel to plane are occupied by K or Rb atoms. The crystal structure of compound 5 is particularly original. It is based upon layers formed from UO7 pentagonal bipyramids and two edge-shared octahedra units, W2O10, by the sharing of edges and corners. Two successive layers stacked along the [100] direction are pillared by WO4 tetrahedra resulting in sheets of double layers. The sheets are separated by Na+ ions. The other Na+ ions occupy the rectangular tunnels created within the sheets. In fact complex anions W5O2010− are built by the sharing of the four corners of a WO4 tetrahedron with two W2O10 dimmers, so, the formula of compound 5 can be written Na10(UO2)8(W5O20)O8.  相似文献   

8.
Reactions of Mo(II)-tetraphosphine complex [MoCl24-P4)] (2; P4 = meso-o-C6H4(PPhCH2CH2PPh2)2) with a series of small molecules have been investigated. Thus, treatment of 2 with alkynes RCCR′ (R = Ph, R′ = H; R = p-tolyl, R′ = H; R = Me, R′ = Ph) in benzene or toluene gave neutral mono(alkyne) complexes [MoCl2(RCCR′)(κ3-P4)] containing tridentate P4 ligand, which were converted to cationic complexes [MoCl(RCCR′)(κ4-P4)]Cl having tetradentate P4 ligand upon dissolution into CDCl3 or CD2Cl2. The latter complexes were available directly from the reactions of 2 with the alkynes in CH2Cl2. On the other hand, treatment of 2 with 1 equiv. of XyNC (Xy = 2,6-Me2C6H3) afforded a seven-coordinate mono(isocyanide) complex [MoCl2(XyNC)(κ4-P4)] (7), which reacted further with XyNC to give a cationic bis(isocyanide) complex [MoCl(XyNC)24-P4)]Cl (8). From the reaction of 2 with CO, a mono(carbonyl) complex [MoCl2(CO)(κ4-P4)] (9) was obtained as a sole isolable product. Reaction of 9 with XyNC afforded [MoCl(CO)(XyNC)(κ4-P4)]Cl (10a) having a pentagonal-bipyramidal geometry with axial CO and XyNC ligands, whereas that of 7 with CO resulted in the formation of a mixture of 10a and its isomer 10b containing axial CO and Cl ligands. Structures of 7 and 9 as well as [MoCl(XyNC)24-P4)][PF6](8′) and [MoCl(CO)(XyNC)(κ4-P4)][PF6] (10a′) derived by the anion metathesis from 8 and 10a, respectively, were determined in detail by the X-ray crystallography.  相似文献   

9.
The reaction of the anion [(tBuP)3As] (1) with Me2SiCl2 results in nucleophilic substitution of the Cl anions, giving the di- and mono-substituted products [Me2Si{As(PtBu)3}2] (3a) and [Me2Si(Cl){As(PtBu)3}] (3b). Analogous reactions of the pre-isolated [(CyP)4As] anion (2) (Cy = cyclohexyl) with Me2SiCl2 produced mixtures of products, from which no pure materials could be isolated. However, reaction of 2 [generated in situ from CyPHLi and As(NMe2)3] gives the heterocycle [(CyP)3SiMe2] (4). The X-ray structures of 3a and 4 are reported.  相似文献   

10.
This work reports on the preparation of the complexes [PdCl2(Y1)2], [PdCl2(Y2)2] (Y1 = (p-tolyl)3PCHCOCH3 (1a); Y2 = Ph3PCHCO2CH2Ph (1b)), [Pd{CHP(C7H6)(p-tolyl)2COCH3}(μ-Cl)]2 (2a), [Pd{CHP(C6H4)Ph2CO2CH2Ph}(μ-Cl)]2 (2b), [Pd{CH{P(C7H6)(p-tolyl)2}COCH3}Cl(L)] (L = PPh3 (3a), P(p-tolyl)3 (4a)) and [Pd{CH{P(C6H4)Ph2}CO2CH2Ph}Cl(L)] (L = PPh3 (3b), P(p-tolyl)3 (4b)). Orthometallation and ylide C-coordination in complexes 2a4b are demonstrated by an X-ray diffraction study of 4a.  相似文献   

11.
Optically active ligands of type Ph2PNHR (R = (R)-CHCH3Ph, (a); (R)-CHCH3Cy, (b); (R)-CHCH3Naph, (c)) and PhP(NHR)2 (R = (R)-CHCH3Ph, (d); (R)-CHCH3Cy, (e)) with a stereogenic carbon atom in the R substituent were synthesized. Reaction with [PdCl2(COD)2] produced [PdCl2P2] (1) (P = PhP(NHCHCH3Ph)2), whose molecular structure determined by X-ray diffraction showed cis disposition for the ligands. All nitrogen atoms of amino groups adopted S configuration. The new ligands reacted with allylic dimeric palladium compound [Pd(η3-2-methylallyl)Cl]2 to gave neutral aminophosphine complexes [Pd(η3-2-methylallyl)ClP] (2a-2e) or cationic aminophosphine complexes [Pd(η3-2-methylallyl)P2]BF4 (3a-3e) in the presence of the stoichiometric amount of AgBF4. Cationic complexes [Pd(η43-2-methylallyl)(NCCH3)P]BF4 (4a-4e) were prepared in solution to be used as precursors in the catalytic hydrovinylation of styrene. 31P NMR spectroscopy showed the existence of an equilibrium between the expected cationic mixed complexes 4, the symmetrical cationic complexes [Pd(η3-2-methylallyl)P2]BF4 (3) and [Pd(η3-2-methylallyl)(NCCH3)2]BF4 (5) coming from the symmetrization reaction. The extension of the process was studied with the aminophosphines (a-e) as well as with nonchiral monodentate phosphines (PCy3 (f), PBn3 (g), PPh3 (h), PMe2Ph (i)) showing a good match between the extension of the symmetrization and the size of the phosphine ligand. We studied the influence of such equilibria in the hydrovinylation of styrene because the behaviour of catalytic precursors can be modified substantially when prepared ‘in situ’. While compounds 3 and bisacetonitrile complex 5 were not active as catalysts, the [Pd(η3-2-methylallyl)(η2-styrene)2]+ species formed in the absence of acetonitrile showed some activity in the formation of codimers and dimers. Hydrovinylation reaction between styrene and ethylene was tested using catalytic precursors solutions of [Pd(η3-2-methylallyl)LP]BF4 ionic species (L = CH3CN or styrene) showing moderate activity and good selectivity. Better activities but lower selectivities were found when L = styrene. Only in the case of the precursor containing Ph2PNHCHCH3Ph (a) ligand was some enantiodiscrimination (10%) found.  相似文献   

12.
The synthesis and crystal structures of 4,5-bis[(triorganotin)thiolato]-1,3-dithiole-2-thione, (R3Sn)2(dmit), 1, and 4,5-bis[(triorganotin)thiolato]-1,3-dithiole-2-one, (R3Sn)2(dmio), 2, compounds are reported. Compounds, (1 or 2: R = Ph or cyclohexyl, Cy), have been obtained from reaction of R3SnCl with Cs2dmit or Na2dmio. The presence of the two tin centres in (2: R = Ph) is shown in the 13C NMR spectrum by the couplings of both Sn atoms to the dmio olefinic carbons with J values of 29.4 and 24.7 Hz. The δ119 Sn values for (1: R = Ph) and (2: R = Ph) differ by about 30 ppm, values being −20.7 and −50.1 ppm, respectively, in CDCl3 solution. X-ray structure determinations for (1: R = Ph) and (2: R = Ph or Cy) reveal the compounds to have 4-coordinate, distorted tetrahedral tin centres. The dithiolato ligands, dmit and dmio, act as bridging ligands, in contrast to their chelating roles in R2Sn(dmit) and R2Sn(dmio). A further difference between R2Sn(dmit) and R2Sn(dmio), on one hand, and 1 and 2 on the other, is that intermolecular Sn-S and Sn-O interactions are absent in 1 and 2. However, weak intermolecular hydrogen bonding interactions are found in (1: R = Ph) [C-H?π] and in (2: R = Ph) [C-H?π and C-H?O].  相似文献   

13.
Two novel Ni(II) complexes {[Ni(en)2(pot)2]0.5CHCl3} (3) {pot = 5-phenyl-1,3,4-oxadiazole-2-thione} (1) and [Ni(en)2](3-pytol)2 (4) {3-pytol = 5-(3-pyridyl)-1,3,4-oxadiazole-2-thiol} (2) have been synthesized using en as coligand. The metal complexes have been characterized by physical and analytical techniques and also by single crystal X-ray studies. The complexes 3 and 4 crystallize in monoclinic system with space group P21/a and P121/c, respectively. The complex 3 has a slightly distorted octahedral geometry with trans (pot) ligands while 4 has a square planar geometry around the centrosymmetric Ni(II) center with ionically linked trans (3-pytol) ligands. The π?π (face to face) interaction plays an important role along with hydrogen bondings to form supramolecular architecture in both complexes.  相似文献   

14.
Treatment of R2Si(CC-SiMe3)2 [1a (Me), 1b (Ph)] with HB(C6F5)2 at low temperature (253 K (a), 273 K (b)) gives the -B(C6F5)2 substituted silacyclobutene products (4a,b) under kinetic control. Upon warming to room temperature they disappear to form the thermodynamically favoured isomeric silole derivatives (2a,b). Similar treatment of Me2Si(CC-R1)2 [5a (R1 = Ph), 5b (R1 = tert-butyl) with HB(C6F5)2 at room temperature gave the stable -B(C6F5)2 substituted silacyclobutene derivatives 6 and 7, respectively. Subsequent photolysis resulted in a Z- to E-isomerization of the substituted exocyclic CC double bonds in these products. The silacyclobutene derivative E-6 was characterized by an X-ray crystal structure analysis.  相似文献   

15.
The X-ray crystal structures of a series of new compounds (H3O)2[{Mn(H2O)1.5}3{Re6Se8(CN)6}2]·19H2O (1), (Me4N)2[{Co(H2O)1.5}3{Re6S8(CN)6}2]·13H2O (2), (Me4N)2[{Co(H2O)1.5}3{Re6Se8(CN)6}2]·3H2O (3), (Et4N)2[{Mn(H2O)2}3{Re6Se8(CN)6}2]·6.5H2O (4), (Et4N)2[{Ni(H2O)2}3{Re6S8(CN)6}2]·6.5H2O (5), and (Et4N)2[{Co(H2O)2}3{Re6S8(CN)6}2]·10H2O (6) are reported. All six compounds are isostructural crystallizing in cubic space group with four formulae per unit cell. For compounds 1, 3-5 the following parameters were found: (1) a=19.857(2) Å, R1=0.0283; (3 at 150 K) a=19.634(1) Å, R1=0.0572; (4) a=20.060(2) Å, R1=0.0288; (5) a=19.697(2) Å, R1=0.0224. The structures consist three-dimensional cyano-bridged framework formed by cyano cluster anions [Re6Q8(CN)6]4−, Q=S, Se and transition metal cations, M2+=Mn2+, Co2+, Ni2+. Water molecules and large organic cations Me4N+ and Et4N+ are included in cavities of this framework. Porosity of the framework, its ability to accommodate different cations and water molecules by little changes in the structure, as well as distortion of coordination framework under loss of water of crystallization is discussed.  相似文献   

16.
Reactions of Ru3(CO)12 with diphosphazane monoselenides Ph2PN(R)P(Se)Ph2 [R = (S)-∗CHMePh (L4), R = CHMe2 (L5)] yield mainly the selenium bicapped tetraruthenium clusters [Ru44-Se)2(μ-CO)(CO)8{μ-P,P-Ph2PN(R)PPh2}] (1, 3). The selenium monocapped triruthenium cluster [Ru33-Se)(μsb-CO)(CO)72-P,P-Ph2PN((S)-∗CHMePh)PPh2}] (2) is obtained only in the case of L4. An analogous reaction of the diphosphazane monosulfide (PhO)2PN(Me)P(S)(OPh)2 (L6) that bears a strong π-acceptor phosphorus shows a different reactivity pattern to yield the triruthenium clusters, [Ru33-S)(μ3-CO)(CO)7{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (9) (single sulfur transfer product) and [Ru33-S)2(CO)52-P,P-(PhO)2PN(Me)P(OPh)2}{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (10) (double sulfur transfer product). The reactions of diphosphazane dichalcogenides with Ru3(CO)12 yield the chalcogen bicapped tetraruthenium clusters [Ru44-E)2(μ-CO)(CO)8{μ-P,P-Ph2PN(R)PPh2}] [R = (S)-∗CHMePh, E = S (6); R = CHMe2, E = S (7); R = CHMe2, E = Se (3)]. Such a tetraruthenium cluster [Ru44-S)2(μ- CO)(CO)8{μ-P,P-(PhO)2PN(Me)P(OPh)2}] (11) is also obtained in small quantities during crystallization of cluster 9. The dynamic behavior of cluster 10 in solution is probed by NMR studies. The structural data for clusters 7, 9, 10 and 11 are compared and discussed.  相似文献   

17.
The C,N-(trimethylsilyliminodiphenylphosphoranyl)silylmethylmetal complexes [Fe(L)2] (3), [Co(L)2] (4), [ZrCl3(L)]·0.83CH2Cl2 (5), [Fe(L)3] (6), [Fe(L′)2] (7) and [Co(L′)2] (8) have been prepared from the lithium compound Li[CH(SiMe2R)P(Ph)2NSiMe3] [1a, (R = Me) {≡ Li(L)}; 1b, (R = NEt2) {≡ Li(L′)}] and the appropriate metal chloride (or for 7, FeCl3). From Li[N(SiMe3)C(Ph)C(H)P(Ph)2NSiMe3] [≡ Li(L″)] (2), prepared in situ from Li(L) (1a) and PhCN, and CoCl2 there was obtained bis(3-trimethylsilylimino- diphenylphosphoranyl-2-phenyl-N-trimethylsilyl-1-azaallyl-N,N)cobalt(II) (9). These crystalline complexes 3-9 were characterised by their mass spectra, microanalyses, high spin magnetic moments (not 5) and for 5 multinuclear NMR solution spectra. The X-ray structure of 3 showed it to be a pseudotetrahedral bis(chelate), the iron atom at the spiro junction.  相似文献   

18.
Consecutive synthesis methodologies for the preparation of carbosilanes (Ph)(Me)Si((CH2)3B(OH)2)2 (2), Si(C6H4-4-SiMe2((CH2)3B(OH)2))4 (5), (Ph)(Me)Si((CH2)3OH)2 (3), and Si(C6H4-4-SiMe3−n((CH2)3OH)n)4 (6a, n = 1; 6b, n = 2; 6c, n = 3) are reported. Boronic acids 2 and 5 are accessible by treatment of (Ph)(Me)Si(CH2CHCH2)2 (1) or Si(C6H4-4-SiMe2(CH2CHCH2))4 (4a) with HBBr2·SMe2 followed by addition of water, while 3 and 6 are available by the hydroboration of 1 or Si(C6H4-4-SiMe3−n(CH2CHCH2)n)4 (4a, n = 1; 4b, n = 2; 4c, n = 3) with H3B·SMe2 and subsequent oxidation with H2O2.The single molecular structure of 6a in the solid state is reported. Representative is that 6a crystallized in the chiral non-centrosymmetric space group P212121 forming 2D layers due to intermolecular hydrogen bond formation of the HO functionalities along the crystallographic a and c axes.  相似文献   

19.
Three new uranyl tungstates, A8[(UO2)4(WO4)4(WO5)2] (A=Rb (1), Cs (2)), and Rb6[(UO2)2O(WO4)4] (3), were prepared by high-temperature solid-state reactions and their structures were solved by direct methods on twinned crystals, refined to R1=0.050, 0.042, and 0.052 for 1, 2, and 3, respectively. Compounds 1 and 2 are isostructural, monoclinic P21/n, (1): a=11.100(7), b=13.161(9), , β=90.033(13)°, , Z=8 and (2): , , , β=89.988(2)°, , Z=8. There are four symmetrically independent U6+ sites that form linear uranyl [O=U=O]2+ cations with rather distorted coordination in their equatorial planes. There are six W positions: W(1) and W(2) have square-pyramidal coordination (WO5), whereas W(3), W(4), W(5), and W(6) are tetrahedrally coordinated. The structures are based upon a novel type of one-dimensional (1D) [(UO2)4(WO4)4(WO5)2]4− chains, consisting of WU4O25 pentamers linked by WO4 tetrahedra and WO5 square pyramids. The chains run parallel to the a-axis and are arranged in modulated pseudo-2D-layers parallel to (0 1 0). The A+ cations are in the interlayer space between adjacent pseudo-layers and provide a 3D integrity of the structures. Compounds 1 and 2 are the first uranyl tungstates with 2/3 of W atoms in tetrahedral coordination. Such a high concentration of low-coordinated W6+ cations is probably responsible for the 1D character of the uranyl tungstate units. The compound 3 is triclinic, Pa=10.188(2), b=13.110(2), , α=97.853(3), β=96.573(3), γ=103.894(3)°, , Z=4. There are four U positions in the structure with a typical coordination of a pentagonal bipyramid that contain uranyl ions, UO22+, as apical axes. Among eight W sites, the W(1), W(2), W(3), W(4), W(5), and W(6) atoms are tetrahedrally coordinated, whereas the W(7) and W(8) cations have distorted fivefold coordination. The structure contains chains of composition [(UO2)2O(WO4)4]6− composed of UO7 pentagonal bipyramids and W polyhedra. The chains involve dimers of UO7 pentagonal bipyramids that share common O atoms. The dimers are linked into chains by sharing corners with WO4 tetrahedra. The chains are parallel to [−101] and are arranged in layers that are parallel to (1 1 1). The Rb+ cations provide linkage of the chains into a 3D structure. The compound 1 has many structural and chemical similarities to its molybdate analog, Rb6[(UO2)2O(MoO4)4]. However, the compounds are not isostructural. Due to the tendency of the W6+ cations to have higher-than-fourfold coordination, part of the W sites adopt distorted fivefold coordination, whereas all Mo atoms in the Mo compound are tetrahedrally coordinated. Distribution of the WO5 configurations along the chain extension does not conform to its ‘typical’ periodicity. As a result, both the chain identity period and the unit-cell volume are doubled in comparison to the Mo analog, which leads to a new structure type.  相似文献   

20.
New uranyl vanadates A3(UO2)7(VO4)5O (M=Li (1), Na (2), Ag (3)) have been synthesized by solid-state reaction and their structures determined from single-crystal X-ray diffraction data for 1 and 3. The tetragonal structure results of an alternation of two types of sheets denoted S for 2[UO2(VO4)2]4− and D for 2[(UO2)2(VO4)3]5− built from UO6 square bipyramids and connected through VO4 tetrahedra to 1[U(3)O5-U(4)O5]8− infinite chains of edge-shared U(3)O7 and U(4)O7 pentagonal bipyramids alternatively parallel to a- and b-axis to construct a three-dimensional uranyl vanadate arrangement. It is noticeable that similar [UO5]4− chains are connected only by S-type sheets in A2(UO2)3(VO4)2O and by D-type sheets in A(UO2)4(VO4)3, thus A3(UO2)7(VO4)5O appears as an intergrowth structure between the two previously reported series. The mobility of the monovalent ion in the mutually perpendicular channels created in the three-dimensional arrangement is correlated to the occupation rate of the sites and by the geometry of the different sites occupied by either Na, Ag or Li. Crystallographic data: 293 K, Bruker X8-APEX2 X-ray diffractometer equipped with a 4 K CCD detector, MoKα, λ=0.71073 Å, tetragonal symmetry, space group Pm2, Z=1, full-matrix least-squares refinement on the basis of F2; 1,a=7.2794(9) Å, c=14.514(4) Å, R1=0.021 and wR2=0.048 for 62 parameters with 782 independent reflections with I?2σ(I); 3, a=7.2373(3) Å, c=14.7973(15) Å, R1=0.041 and wR2=0.085 for 60 parameters with 1066 independent reflections with I?2σ(I).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号