首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Hexagonal boron nitride (hBN) powder was fabricated prepared by the spray drying and calcining-nitriding technology. The effects of nitrided temperature on the phases, morphology and particle size distribution of hBN powder, were investigated. The synthesized powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transformed infrared spectrum, ultraviolet-visible (UV-vis) spectrum and photoluminescence (PL) spectrum. UV-vis spectrum revealed that the product had one obvious band gap (4.7 eV) and PL spectrum showed that it had a visible emission at 457 nm (λex=230 nm). FESEM image indicated that the particle size of the synthesized hBN was mainly in the range of 0.5-1.5 μm in diameter, and 50-150 nm in thickness. The high-energy ball-milling process following 900 °C calcining process was very helpful to obtain fully crystallized hBN at lower temperature.  相似文献   

2.
A multi-step reaction route was developed to synthesize boron nitride(BN) nanoparticles via the reaction between NaN3 and BCl3 in a benzene-thermal solution. By means of this route, the crystallinity of BN nanoparticles was improved via increasing the reaction steps. Meanwhile, a phase transformation from hexagonal BN(hBN) or turbostratic BN(tBN) to cubic BN(cBN) occurred, resulting in the increase of cBN content. Moreover, the content of cBN also slightly increased when the temperature was elevated from 265 ℃ to 280 ℃.  相似文献   

3.
Borylborazines as new precursors for boron nitride fibres   总被引:1,自引:0,他引:1  
A variety of borylborazine-based polymers were successfully converted into boron nitride fibres via the preceramic polymer route. In this procedure, four monomers were polycondensed into highly tractable polymers which could be easily melt-spun into fine-diameter green fibres. These polymeric filaments were then transformed into boron nitride fibres after a well-defined heat-treatment at 1800 °C in a controlled atmosphere. All the resulting ceramic fibres were mechanically tested. In particular, results showed that the promising mechanical properties for two of the polymer-derived fibres were closely related to the structural units of the corresponding preceramic polymers.  相似文献   

4.
The phase transition of hBN nanocrystals induced by hydrothermal hot-pressing process has been investigated by XRD, FTIR, TEM and HRTEM. It was found that a phase transition of hBN  tBN  aBN occurred with increasing hot-pressing temperature, i.e., hBN transformed into tBN at above 270 °C, and followed by another transformation from tBN to aBN at 310 °C. In addition, FTIR spectra and HRTEM images indicate that a small amount of cBN formed directly from the amorphous BN matrix at 75 MPa and 310 °C. This phenomenon is similar to what happened in conventional high temperature and high pressure method, which is believed to promote the phase transition from hBN to cBN.  相似文献   

5.
Ferrihydrite was prepared by two different procedures. Ferrihydrite-1 was prepared by dropping NaOH solution into Fe(III) solution. Ferrihydrite-2 was prepared by adding Fe(III) and NaOH solutions into a certain volume of water simultaneously. Our earlier results obtained at ∼100 °C have shown that the structure of ferrihydrite-2 favors its solid state transformation mechanism. Further research reveals that the structure of ferrihydrite-2 favors its dissolution re-crystallization mechanism at a temperature of ≤60 °C. Based on the transformation mechanism of ferrihydrite at different temperatures, the controllable transformation from ferrihydrite to various iron (hydr)oxides such as lepidocrocite, goethite, hematite and magnetite can be achieved by adjusting the pH, transformation temperature, transformation time, the amount of Fe(II) as well as the preparation procedures of ferrihydrite. The results in the present paper give a nice example that the transformation of a precursor can be controlled with the help of mechanism.  相似文献   

6.
Highly crystalline rhombohedral boron nitride (r-BN) with regular triangular shapes were synthesized on a large scale in a stainless steel autoclave using B2O3 and NaNH2 as reactants at 600 °C for 6 h. The as-prepared BN triangular nanoplates have an average edge length of 400 nm and the thickness of about 60 nm. The photoluminescence measurements reveal that the r-BN products show strong yellow-green emission. The as-prepared r-BN has potential optical and optoelectronic applications in high temperature devices due to its excellent thermal stability and anti-oxidation properties.  相似文献   

7.
Thermal stability of well-crystallized cubic boron nitride (cBN) films grown by chemical vapor deposition has been investigated by cathodoluminescence (CL), Raman spectroscopy, and scanning electron microscopy (SEM) with the cBN films annealed at various temperatures up to 1,300 degrees C. The crystallinity of the cBN films further improves, as indicated by a reduction of the relevant Raman line width, when the annealing temperature exceeds 1,100 degrees C. Structural damage or amorphization was observed on the grain boundaries of the cBN crystals when annealing temperature reaches 1,300 degrees C. The CL spectra are found to be unchanged up to 1,100 degrees C after annealing at 500 degrees C, showing the stability of the cBN films in electronic properties up to this temperature. New features were observed in the CL spectra when annealing temperature reaches 1,200-1,300 degrees C.  相似文献   

8.
SiBN films were prepared by the MOCVD method using triethylsilane and triethylboron as source materials. The SiBN films were a mixture of boron nitride and silicon nitride determined by IR spectra. The relationship between the ratio of mixture and the preparation condition is clarified. The ratio of silicon nitride to boron nitride in the films was proportional to the ratio of triethylsilane to triethylboron under a large excess of ammonia flow condition. The reaction temperature also influenced the ratio of boron nitride and silicon nitride in the films. The deposition rate of the film increased up to 800°C with a maximum at 1000°C, and decreased up to 1300°C with small value. The crystallinity of SiBN films was very poor because the crystal growth was obstructed.  相似文献   

9.
Poly[(methylamino)borazine] (PolyMAB) green fibers of a mean diameter of 15 μm have been pyrolyzed under ammonia up to 1000°C and heat treated under nitrogen up to 2000°C to prepare boron nitride (BN) fibers. During the polymer-to-ceramic conversion, the mechanical properties of the green fibers increase within the 25-400°C temperature range owing to the formation of a preceramic material and remain almost constant up to 1000°C. Both the crystallinity and the mechanical properties slightly increase within the 1000-1400°C range, in association with the consolidation of the fused-B3N3 basal planes. A rapid increase in tensile strength (σR) and elastic modulus (Young's modulus E) is observed in relation with crystallization of the BN phase for fibers treated between 1400°C and 1800°C. At 2000°C, “meso-hexagonal” BN fibers of 7.5 μm in diameter are finally obtained, displaying values of σR=1.480 GPa and E=365 GPa. The obtention of both high mechanical properties and fine diameter for the as-prepared BN fibers is a consequence of the stretching of the green fibers on a spool which is used during their conversion into ceramic.  相似文献   

10.
Titanium nitride nanorods have been successfully synthesized by low temperature solid-state metathesis of titanium (III) chloride and sodium azide without using any organic solvent. The conditions required for the synthesis of these nanorods have been optimized. It was found that the temperature and time of reaction had a significant effect on the product morphology. Thermal treatment at 360 °C, for 3 days gave the nanorods of the aspect ratio ∼10 (i.e. diameter ∼50 nm and length ∼ 500 nm), whereas the thermal treatment at 400 °C for 3 days gave the nanorods of the aspect ratio ∼50 (i.e. diameter ∼50 nm and length ∼2-3 μm). Scanning and transmission electron microscopies clearly showed the rod-type morphology. Further evidence for the phase purity and crystallinity of titanium nitride nanorods was given by X-ray diffraction, field emission high-resolution electron microscopy and X-ray photoelectron spectroscopy analyses.  相似文献   

11.
Densification of boron carbide during sintering may be improved by a two-stage process, namely heating to 2000°C under vacuum and sintering at 2190°C under argon. This sintering regime allows achieving a relative density of the ceramic bodies fabricated from a fine powder higher than 95%. The nitrogen treatment of the boron carbide phase at 1900°C leads to the formation of the BN phase and precipitation of graphite. Vacuum treatment of these samples at 2000°C leads to decomposition of the boron nitride phase. The liberated free boron may again react with graphite to form in situ boron carbide particles. The experimental investigations of the sintering behavior of the boron carbide phase under various atmospheres supported the thermodynamic predictions regarding the phase transformation. No evidence, however, was found for enhanced sintering under a nitrogen atmosphere.  相似文献   

12.
TiN nanorods were synthesized using electrospinning technique followed by thermolysis in different atmospheres. A dimethyl formamide-ethanol solution of poly-(vinyl pyrrolidone) and Ti (IV)-isopropoxide was used as the electrospinning precursor solution and as-spun nanofibers were calcined at 500 °C in air to generate TiO2 nanofibers. Subsequently, a conversion from TiO2 nanofibers to TiN nanorods was employed by the nitridation treatment at 600∼1400 °C in ammonia atmosphere. A typical characteristic of the final products was that the pristine nanofibers were cut into nanorods. The conversion from TiO2 to TiN was realized when the nitridation temperature was above 800 °C. As-prepared nanorods were composed of TiN nano-crystallites and the average crystallite size gradually increased with the increase of the nitridation temperature. Electrochemical properties of TiN nanorods showed strong dependence on the nitridation temperature. The maximum value of the specific capacitance was obtained from the TiN nanorods prepared at 800 °C.  相似文献   

13.
We present low stress cubic boron nitride (cBN) films with a transition layer deposited on the metal alloy substrates by tuned substrate radio-frequency magnetron sputtering. The films were characterized by Fourier transform infrared spectroscopy and transmission electron microscopy (TEM). The IR peak position of cubic boron nitride at 1006.3 cm−1, which is close to the stressless state, indicates that the film has very low internal stress. The TEM image shows that pure CBN phase exists on the surface of the film. Several phases of boron nitride were found at the medium implantation dose. It is believed that the transition from the low ordered phases to cBN phase occurred during implantation.  相似文献   

14.
A novel procedure for preparing heterocyclic compounds such as (Z)-2-(1-trimethylgermyl-1-alkenyl)-1,3,2-dioxaborinanes based on 1-trimethylgermyl-1-alkynes is described. 1-Trimethylgermyl-1-alkynes easily obtainable by deprotonation of 1-alkynes with n-butyllithium followed by treatment with trimethylgermanium chloride, are readily hydroborated in n-pentane in the presence of boron trichloride in hexane at 0 °C for 3 h. The resulting supernatant clear solution was separated from boron trichloride-methyl sulfide complex. It was then reacted with 1,3-propane diol at 0 °C for 0.5 h. The resulting representative (Z)-2-(1-trimethylgermyl-1-alkenyl)-1,3,2-dioxaborinanes were isolated in good yields (65-86%) and in high stereochemical purities (>98%) as evidenced by NMR spectral data. The carbon skeletons present in these intermediates were confirmed by alkaline hydrogen peroxide oxidation to the corresponding carboxylic acids.  相似文献   

15.
Cubic boron nitride (cBN) is a common material for tools for the machining of cast irons at high cutting speed. During the machining of compacted graphite iron (CGI) in continuous cutting the wear of the cBN tools was found to be significantly higher compared to the machining of grey cast iron. This is possibly a result of a heating of the tool surface during the cutting of CGI. One possible reason for the wear is diffusion of some elements from the cutting tool into the CGI or from the CGI into the cutting tool. SIMS measurements were carried out which prove the existence of such diffusion processes. A static model experiment has been performed by heating cBN tools to 700 °C while in contact with CGI or cast iron (CI). SIMS depth profiles of the cBN tools and of CGI/CI show that there is a diffusion of several elements in both directions (B, W and Ti from the cBN tools into the CGI or CI, Fe and Si from the CGI or CI samples into the cBN) up to a depth of 20 μm. Received: 18 March 1999 / Revised: 16 June 1999 / Accepted: 18 June 1999  相似文献   

16.
By dropwise addition of a chitosan solution into different non-solvent, such as: 1 N and 2 N NaOH as well as 1 N NaOH: C2H5OH mixture (2:1, v/v) at temperature of 25 °C and 50 °C under stirring, the spherical pure chitosan microparticles were performed. As solvents for chitosan was used 0.1 N acetic acid or 0.1 N HCl. The immersion of the pure chitosan microparticles in hyaluronan solution led to complex microparticles, namely chitosan microparticles covered by a hyaluronan layer. For all the microparticles performed the behaviours in the retention process of two antibiotics: chloramphenicol succinate sodium salt and cefotaxime sodium salt were analyzed. Also, the study shows the release behaviour of cefotaxime sodium salt by the microparticles loaded with this drug. Among the microparticles performed a type of complex microparticles can be considered a suitable drug delivery system for cefotaxime. These microparticles were performed by dropwise addition of chitosan solution in 0.1 N acetic acid into the 1 N NaOH: C2H5OH (2:1, v/v) non-solvent at 20 °C for 3 h, followed by their washing up to alkalinity loss and the immersion in hyaluronan solution of 10 g/L concentration for 24 h.  相似文献   

17.
Cubic boron nitride (cBN) is synthesized by a low-temperature solid state synthesis and in situ phase transformation route with NH(4)BF(4), B, NaBH(4) and KBH(4) as the boron sources and NaN(3) as the nitrogen source. Furthermore, two new strategies are developed, i.e., applying pressure on the reactants during the reaction process and introducing the structural induction effect. These results reveal that the relative contents of cBN are greatly increased by applying these new strategies. Finally, almost pure cBN (~90%) crystals are obtained by reacting NH(4)BF(4) and NaN(3) at 250 °C and 450 MPa for 24 h, with NaF as the structural induction material. The heterogeneous nucleation mechanism can commendably illuminate the structure induction effect of NaF with face center cubic structure. In addition, the induction effect results in the cBN nanocrystals presenting obvious oriented growth of {111} planes.  相似文献   

18.
The effects of temperature on the stability of a soil humic acid were studied in the present work. Solid samples of Gohy-573 humic acid (HA) and dissolved ones in aqueous solution (pH 6.0, 0.1 mol L−1 NaClO4) were investigated in order to understand the impact of temperature on the chemical properties of the material. The methods applied to solid samples in the present investigation were thermogravimetric analysis (TGA), temperature-programmed desorption coupled with mass spectrometry (TPD-MS), and in situ diffuse reflectance infrared Fourier transformed spectroscopy (in situ DRIFTS). Humic acid samples were studied in the 25-800 °C range, with focus on thermal/chemical processes up to 250 °C. The reversibility of the changes observed was investigated by cyclic changes to specified temperature ranges (40-110 °C). All measurements were conducted under inert-gas atmosphere in order to avoid samples combustion at increased temperatures. Aqueous solutions were analyzed by UV-vis absorption spectroscopy after storage at temperatures up to 95 °C, and storage times up to 1 week. For temperatures below 100 °C experiments on solid and aqueous samples have shown results which were consistent to each other. The amount of water desorbed is temperature dependent and up to 70 °C this process was totally reversible. Above 70 °C an irreversible loss of water was also observed, which according to UV-vis spectroscopy corresponds to water produced by condensation leading to more condensed polyaromatic structures. The water released up to 110 °C was about 7 wt% of the total mass of the dried humic acid, where less than 50% corresponded to reversibly adsorbed water. At higher temperatures (>110 °C), gradual decomposition resulting in the formation of carbon dioxide (110-240 °C), and carbon monoxide (140-240 °C) takes place. Hence, thermal treatment of Gohy-573 humic acid above 70 °C results in irreversible structural changes, that could affect chemical properties (e.g., complex formation) of the material.  相似文献   

19.
Many studies have reported the use of near infrared (NIR) spectroscopy to characterize wines or to predict wine chemical composition. However, little is known about the effect of variation in temperature on the NIR spectrum of wine and the subsequent effect on the performance of calibrations used to measure chemical composition. Several parameters influence the spectra of organic molecules in the NIR region, with temperature being one of the most important factors affecting the vibration intensity and frequency of molecular bonds. Wine is a complex mixture of chemical components (e.g. water, sugars, organic acids, and ethanol), and a simple ethanol and water model solution cannot be used to study the possible effects of temperature variations in the NIR spectrum of wine. Ten red and 10 white wines were scanned in triplicate at six different temperatures (25 °C, 30 °C, 35 °C, 40 °C, 45 °C and 50 °C) in the visible (vis) and NIR regions (400-2500 nm) in a monochromator instrument in transmission mode (1 mm path length). Principal component analysis (PCA) and partial least squares (PLS) regression models were developed using full cross validation (leave-one-out). These models were used to interpret the spectra and to develop calibrations for alcohol, sugars (glucose + fructose) and pH at different temperatures. The results showed that differences in the spectra around 970 nm and 1400 nm, related to OH bonding were observed for both varieties. Additionally an effect of temperature on the vis region of red wine spectra was observed. The standard error of cross validation (SECV) achieved for the PLS calibration models tended to inverse as the temperature increased. The practical implication of this study it is recommended that the temperature of scanning for wine analysis using a 1 mm path length cuvette should be between 30 °C and 35 °C.  相似文献   

20.
Cubic boron nitride (cBN) and orthorhombic boron nitride (oBN) crystals have been prepared in hydrothermal solutions by reacting H3BO3 NaN3 P and H3BO3 NaN3 N2H4 respectively. The experimental results indicated that, if the temperature was increased rapidly, both the yield and perfectness of BN crystals became poor. On the contrast, the yield and perfectness of BN crystals can be improved very much by slowly increasing the temperature of the reaction mixture. The results of X-ray powder diffraction (XRD), Fourier transform infrared spectrum (FTIR) and high resolution transmission electron microscopy (HRTEM) proved that the samples were composed of oBN and cBN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号