首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
NaA, NaX and NaZSM-5 zeolites were prepared by using silica extracted from rice hull ash as a raw material, and they were investigated for CO2 adsorption performance as an adsorbent in order to solve the problem of suppressing the global warming. Three zeolites were synthesized by hydrothermal methods with seed technology, and a series of characterization methods, including XRD, FTIR, nitrogen adsorption-desorption and SEM, were used to demonstrate their advantages compared to traditional hydrothermal methods. The maximum equilibrium adsorption capacity of NaA-RS, NaX-RS and NaZSM-5-RS was 1.46, 3.12 and 2.20 mmol/g at 0 °C and 101.3 kPa, respectively. The CO2 and N2 adsorption isotherms recorded at different temperatures were perfectly fitted by the Dual-site Langmuir model. The CO2/N2 selectivity and Henry's law constants were calculated to demonstrate that the samples have a stronger affinity for CO2, especially at low pressures. The isosteric heat of CO2 and N2 adsorption of the three zeolites was calculated, which was indicated that they were in an excellent potential for adsorption and separation of CO2 in industrial flue gas.  相似文献   

2.
<正>A novel ferrite composite using rice husk as substrate has been prepared via high temperature treatment under nitrogen atmosphere.The rice husk substrate consists of porous activated carbon and silica,where spinel ferrite particles with average diameter of 59 nm are distributed.The surface area of the composite is greater than 170 m~2 g~(-1) and the bulk density is less than 0.6 g cm~(-3).Inert atmosphere is indispensable for the synthesis of pure ferrite composites,while different preparation temperatures of above 600℃result in composites with similar structures and morphologies.Due to the presence of ferrite particles,this novel composite shows enhanced adsorption ability for acid orangeⅡ.  相似文献   

3.
Ordered porous cabon with a 2-D hexagonal structure,high specific surface area and large pore volume was synthesized through a twostep heating method using tri-block copolymer as template and phenolic resin as carbon precursor.The results indicated the electrochemical performance of the sulfur/carbon composites prepared with the ordered porous carbon was significantly affected by the pore structure of the carbon.Both the specific capacity and cycling stability of the sulfur/carbon composites were improved using the bimodal micro/meso-porous carbon frameworks with high surface area.Its initial discharge capacity can be as high as 1200 mAh·g~(-1) at a current density of 167.5 mA·g~(-1)The improved capacity retention was obtained during the cell cycling as well.  相似文献   

4.
The production of functional activated carbon materials starting from cheap natural precursors using environmentally friendly processes is a highly attractive subject in material chemistry today. Recently, much attention has been focused on the use of plant biomass to produce functional carbonaceous materials, encompassing economic, environmental and social issues. Besides the classical route to produce activated carbons from fossil materials, rice husk shows clear advantages in that it can generate a variety of cheap and sustainable carbonaceous materials with attractive nanostructure and functional patterns for a wide range of applications. From a comprehensive literature review, it was found that porous carbon that derived from rice husks, in addition to having wide availability, has fast kinetics and appreciable adsorption capacities too. Porous carbon materials also play a significant role in new applications such as catalytic supports, battery electrodes, capacitors, and gas storage. In this review, an extensive list of rice husks literature has been compiled. Conclusions have been drawn from the literature reviewed, and suggestions for future research are proposed.  相似文献   

5.
以聚对苯二甲酸乙二醇酯(PEA)、甲苯二异氰酸酯(TDI-80)、扩链剂(MOCA)、分子筛为原料,采用预聚体法制备了聚氨酯/分子筛复合材料.考察了分子筛的种类及加入量对聚氨酯/分子筛复合材料的耐溶剂性能、力学性能及热分解温度的影响.结果表明:在相同加入量的前提下,采用4A和13X分子筛制备的复合材料,前者的耐溶剂性能及力学性能要优于后者,当加入量为5%时,性能达到最佳.两者的加入均能提高复合材料的热分解温度,但影响相差不大.  相似文献   

6.
稻壳炭基固体酸催化剂的制备及其催化酯化反应性能   总被引:3,自引:0,他引:3  
李明  陈登宇  朱锡锋 《催化学报》2013,34(9):1674-1682
以热解稻壳炭为原料, 浓硫酸为磺化剂制备了固体酸催化剂. 采用X射线衍射、X射线光电子能谱、元素分析、孔结构分析和热重-质谱联用等手段对其进行了表征. 以油酸和甲醇的酯化为探针反应, 考察了磺化温度和时间对催化剂活性的影响, 探讨了反应条件对油酸转化率的影响, 并对所制催化剂的稳定性进行了研究. 结果表明, 制备该催化剂的适宜磺化温度和时间分别为90℃和0.25 h, 在该条件下制得的催化剂为无定形碳结构, 磺酸基密度为0.7 mmol/g. 该催化剂表现出较高的催化酯化反应活性, 在催化剂用量为5%、甲醇/油酸摩尔比为4、酯化温度和时间分别为110℃和2 h的条件下, 油酸的酯化率可达98.7%. 该催化剂具有较好的稳定性, 经7次连续反应后, 油酸的酯化率仍可达96.0%.  相似文献   

7.
An electrochemical method based on potentiometric stripping analysis (PSA) employing a hexathia 18C6 (HT18C6) and rice husk (RH) modified carbon paste electrode (HT18C6–RH-CPE) has been proposed for the subnanomolar determination of antimony. The characterization of the electrode surface has been carried out by means of scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy and chronocoulometry. By employing HT18C6–RH-CPE, a 12-fold enhancement in the PSA signal (dt/dE) was observed as compared to plain carbon paste electrode (PCPE). Under the optimized conditions, dt/dE (s V−1) was proportional to the Sb(III) concentration in the range of 1.42 × 10−8 to 6.89 × 10−11 M (r = 0.9944) with the detection limit (S/N = 3) of 2.11 × 10−11 M. The practical analytical utilities of the modified electrode were demonstrated by the determination of antimony in pharmaceutical formulations, human hair, sea water, urine and blood serum samples. The prepared modified electrode showed several advantages, such as simple preparation method, high sensitivity, very low detection limit and excellent reproducibility. Moreover, the results obtained for antimony analysis in commercial and real samples using HT18C6–RH-CPE and those obtained by inductively coupled plasma-atomic emission spectrometry (ICP-AES) are in agreement at the 95% confidence level.  相似文献   

8.
《印度化学会志》2023,100(2):100900
In the present work RHDAC electrode was used to electrosorption of hexavalent chromium and fluoride (HCAF) by capacitive deionization from the aqueous feed. In this study multicomponent isotherm (MCI) modeling were done with different six MCI models for simultaneous removal of HCAF using RHDAC electrodes. This RHDAC electrode performance was indicated the simultaneous maximum electrosorption 2.47 and 2.34 mg/g for HCAF respectively for 100 mg/L aqueous feed. The results show that MCIM3 (Extended Langmuir) and MCIM5 (Non modified Redlich Peterson) models were found more fit to with experimental data with lower MPSD for both HCAF than other MCI models. The RHDAC was an effective electrode material for HCAF sorption from low concentrated feed.  相似文献   

9.
The biomedical application of carbon/carbon (C/C) composites is limited by lacking bioactivity and releasing carbon debris. Hydroxyapatite (HA) coating has been used to improve the bioactivity of C/C composites, but it cannot reduce the release of carbon debris effectively because of poor wear resistance property. In this work, a wear‐resistant layer of diamond like carbon (DLC) is applied on C/C composites, followed by an ultrasound‐assisted electrochemical deposition to prepare HA coatings. The microstructure, morphology and chemical composition of the DLC layer and the HA coating are characterised by scanning electron microscopy, X‐ray diffraction, energy dispersive spectroscopy (EDS), X‐ray photoelectron spectroscopy, Fourier transformed infrared spectroscopy and Raman spectrum. The bonding strength between the HA coating and the DLC layer modified C/C composites is examined by a tensile test. The results show that the DLC layer has a spherical morphology and provides a uniform surface for the deposition of the HA coating. The HA coating shows flaky morphology with a compact structure. The tensile strength of the HA coating on the DLC layer modified C/C composites is 6.24 ± 0.40 MPa, which is significantly higher than that of HA coating on unmodified C/C composites(3.04 ± 0.20 MPa). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
SiC coatings were applied on carbon/carbon composites by chemical vapor deposition for potential application in hip arthroplasty. The surface morphology, roughness, and wettability of the coatings were evaluated by scanning electron microscopy, laser confocal scanning microscope, and video‐based contact angle measuring device, respectively. The bonding strength between the coatings and carbon/carbon composites was analyzed by scratch testing. The cell responses to coatings were studied by analyzing the cell morphology and cell proliferation. The results showed that SiC coatings showed spherical morphology with a roughness of Ra = 1.0 ± 0.2 µm and a contact angle of 64.7 ± 4.0°. The coatings had lower surface roughness and better surface hydrophilicity compared with those of the uncoated carbon/carbon composites. A strong shear strength averaging 120.0 MPa between the coating and carbon/carbon composites was achieved. The cell culture experiments showed that cell spreading was improved, and cell proliferation was increased with the SiC coatings. It was demonstrated that CVD‐SiC‐coated carbon/carbon composites were good candidates as artificial hip joint materials. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Main features of the formation of porous composites by hydrothermal treatment of powdered aluminium were studied by scanning electron microscopy, TEM, XPD, IR spectroscopy of lattice modes, and thermal analysis. Hydrothermal oxidation of aluminium was shown to proceedvia generation and subsequent oriented growth of well-crystallized boehmite platelets, whose subsequent dehydration yields γ-alumina. Relation between the degree of the metal oxidation and specific surface area/crushing strength of the composites was analyzed.  相似文献   

12.
Size‐controllable polypyrrole (PPy)/multiwalled carbon nanotube (MWCNT) composites have been synthesized by in situ chemical oxidation polymerization directed by various concentrations of cationic surfactant cetyltrimethylammonium bromide (CTAB). Raman spectra, FTIR, SEM, and TEM were used to characterize their structure and morphology. These results showed that the composites are core (MWCNT)–shell (PPy) tubular structures with the thickness of the PPy layer in the range of 20–40 nm, depending on the concentration of CTAB. Raman and FTIR spectra of the composites are almost identical to those of PPy alone. The electrical conductivities of these composites are 1–2 orders of magnitude higher than those of PPy without MWCNTs. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6449–6457, 2006  相似文献   

13.
Paper cup composed of crude cellulose is a common waste in daily life. In this paper, hierarchical porous carbons have been successfully prepared by an initial hydrothermal treatment and subsequent activation route from abandoned paper cup, and then paper cup derived carbons are used as scaffolds to fabricate serial carbon/Se composites. The optimal composite presents unique 3D porous structure, with amorphous selenium uniformly confined into the micropores of carbon. As the cathode materials of Li-Se battery, this composite reveals an initial reversible discharge capacity of 517.2 mAh g−1 at 0.2C, and a capacity value of 431.9 mAh g−1 can be retained after 60 cycles. Even at a high rate of 4C, a capacity value of 295.8 mAh g−1 can be obtained. By comparison, the improved electrochemical performance of the optimal composite should be attributed to reasonable porous structure and effective encapsulation of amorphous selenium.  相似文献   

14.
Mesoporous molecular sieves were synthesized from Beta and Fau zeolite precursors through S+XI+ route under extremely acidic conditions in parallel (designated as MBeta and MFau, respectively). The textural properties of MFau were different from its MBeta counterpart but resembled normal MCM-41 silica from TEOS. Al content in MBeta was almost equivalent to that in the initial Beta zeolite precursors, whereas only trace Al species was present in MFau from elemental analysis results. The hydrothermal stability of MBeta after post-synthesis ammonia treatment was considerably improved compared with normal MCM-41 aluminosilicates, whereas the MFau after the same procedure was as unstable as normal MCM-41 silica. Thus, the assembly behaviors of Beta and Fau zeolite precursors were comparatively studied based on these results. The microstructure of Fau zeolite precursors were degraded by the extremely acidic condition, and Al species was dissolved into the synthesis mixture. However, Beta zeolite precursors survived the chemical attack of extremely acidic media and were incorporated into mesostructured framework as primary building units.  相似文献   

15.
《印度化学会志》2023,100(5):100982
Crystalline nano silica (SiO2) was synthesized using a cost-effective eco-friendly method from agricultural waste material like rice husk. Polymer nanocomposite has been prepared using the sol-gel technique from crystalline nano silica using PVA as a polymer binder. Thermal analysis measurement is employed to investigate thermal stability. The XRD analysis shows the crystalline nature of silica is revealed to have characteristic peaks of SiO2. The particle size was evaluated using Schererr's formula and found to be in the range of 21–31 nm. FTIR measurement shows the presence of O–Si–O (silane) bond formation. The PL measurement shows broad excitation prominently in the visible region. In the XRD pattern, a major peak of the Nanocomposite is observed at an angular position of 19.5° degree, which is more prominent than that of the PVA with the addition of 0.2 wt percent Nano silica to the PVA composite. SEM provides information on homogeneous distribution. This could be beneficial in terms of higher mechanical qualities as well as multifunctional properties. By hydrogen bonding, the PVA molecules are strongly linked to each SiO2 nanoparticle as measured by FTIR. The stability of materials is confirmed by Zeta Potential and DLS. In the photoluminescence property of SiO2-PVA crystalline Nano silica composite is excited using a radiation wavelength of 200 nm. The indirect bandgap was determined to be 4.28 eV which could be attributed to the 1100 °C annealing temperature. Such materials may be used as a semiconductor material obtained from a direct natural source, rice husk. Thus, in the present research structural, physical, and optical properties of crystalline nano silica and its polymer composite are explored, which leads us to prepare technological grads material from agricultural waste for varied applications including Agriculture to medical science.  相似文献   

16.
碳纳米管/聚苯胺复合材料因其独特的电磁学、热力学和机械性能,在很多领域具有潜在应用价值.本文作者对近年来该复合材料的制备方法、性能及应用方面的研究进展进行了综述.  相似文献   

17.
In order to improve the cell compatibility of biomedical carbon/carbon composites, Ti6Al4V coatings were applied on carbon/carbon composites by magnetron sputtering technique. The microstructure and cell responses of the coatings were evaluated, and the bonding strength between the coatings and carbon/carbon composites was analyzed. The Ti6Al4V coatings modulated the surface morphology, decreased the surface roughness, improved the surface wettability and achieved a strong bonding strength to carbon/carbon composites. The cells showed larger cell extension and higher cell proliferation for the Ti6Al4V coatings than for the carbon/carbon composites. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
采用溶胶-凝胶法和水热合成法,制备出碳纳米管/TiO2(CNTs/TiO2)复合材料。通过X-射线衍射仪(XRD)、扫描电子显微镜(SEM),紫外-可见漫反射光谱(UV-Vis),荧光光谱(LS)检测CNTs/TiO2的晶型及形貌。结果表明:锐钛矿相TiO2纳米颗粒负载在碳纳米管的管壁上,CNTs/TiO2在紫外-可见光波长范围均有较好的吸收性能。在灭菌灯照射下,以甲基橙溶液为降解目标,CNTs/TiO2复合材料对甲基橙溶液的降解有高的光催化活性,180 min内降解率达到85%以上。  相似文献   

19.
A polymer composite of polypyrrole (PPy) and polystyrene (PS) was synthesized in this study. Pyrrole was firstly impregnated within the PS substrate where supercritical carbon dioxide (SCCO2) at 40 °C and 10.5 MPa was used as the solvent. The resulting polymer composite was then soaked in a solution of metallic salt to form an electrically conductive product. Thermal analyses were carried out in this study. Glass transition temperatures from the DSC curves and thermal decomposition temperatures from the TGA curves were observed. These temperatures rise gradually from pure PS, undoped blend to doped composite that indicates blending took place in SCCO2, and polymerization was proceeding when the pyrrole/PS blend was soaking in the doping solution. Furthermore, various effects of the doping conditions on the conductivity of the PPy/PS composite were investigated. Water and acetonitrile were used as the solvents where the former yielded a higher conductivity of the product. Various doping temperatures were studied and a maximum conductivity was observed at 25 °C. The conductivity also depends on the nature of the oxidant. A bell-shaped profile of the conductivity with respect to the concentration of each oxidant was obtained. The maximum conductivity of the composites with iron compounds as oxidants decreases in the following order of anions: chloride > sulfate > perchloride > nitrate in aqueous solutions. Comparison of the scanning electron microscope results of the composite was presented where chloride and nitrate anions were used as the oxidant. It was found that the composite with higher conductivity has higher bulk density and less porous morphology.  相似文献   

20.
Despite the remarkable number of investigations on the potential risks of the engineered nanomaterials (ENMs) to terrestrial plants, there was limited knowledge regarding the effects of mesoporous carbon nanoparticles (MCNs) with different sizes on crops. The objective of our study was to evaluate the toxicity of MCNs to rice (Oryza sativa L.) seedlings. Two novel MCNs with different particle sizes (MCN1: 150 and MCN2: 80?nm) were synthesized using the high-temperature pyrolysis method and characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, and Raman spectra. Phytotoxicity of two MCNs was then comparatively evaluated using rice as a model plant. The rice seedlings were hydroponically exposed to both MCN suspensions with concentrations of 0, 10, 50, 150?mg/L for 20?days. Exposure to 150?mg/L MCN1 resulted in more than 21% and 29% decrease in root length and in shoot length, respectively. MCN2 significantly reduced the root and shoot lengths by approximately 70% and 57% at the concentration of 150?mg/L. Additionally, the concentrations of three endogenous phytohormones, including brassinolide (BR), indole propionic acid (IPA), and dihydrozeatinriboside (DHZR) in plant shoots were increased significantly compared with the control. Our findings illustrated that size-effects of MCNs contributed greatly in causing phytotoxicity to plants, which should have drawn our attention to the use of these novel ENMs in agriculture given the evidence of their potential risks to crops. More importantly, this is the first study on assessment of the phytotoxicity of MCNs to rice seedlings from the perspective of plant hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号