首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quadruple perovskites Ba4LnRu3O12 (Ln=La, Nd, Sm-Gd, Dy-Lu) were prepared and their magnetic properties were investigated. They adopt the 12L-perovskite-type structure consisting of Ru3O12 trimers and LnO6 octahedra. All of these compounds show an antiferromagnetic transition at 2.5-30 K. For Ba4NdRu3O12, ferrimagnetic ordering has been observed at 11.5 K. The observed magnetic transition is due to the magnetic behavior of the Ru4.33+3O12 trimer with S=. Magnetic properties of Ba4LnRu3O12 were compared with those of triple perovskites Ba3LnRu2O9 and double perovskites Ba2LnRuO6.  相似文献   

2.
Ternary lanthanide rhenium oxides Ln3ReO7 (Ln=Sm, Eu, Ho) were prepared and their structures were determined by X-ray diffraction measurements. They crystallize in an orthorhombic superstructure of cubic fluorite (space group Cmcm for Ln=Sm, Eu; C2221 for Ln=Ho). The magnetic properties were characterized by magnetic susceptibility and specific heat measurements from 1.8 to 400 K. The Sm3ReO7 shows an antiferromagnetic transition at 1.9 K. The Eu3ReO7 indicates a magnetic anomaly at 12 K. On the other hand, the results of the specific heat measurements indicate that both Sm3ReO7 and Eu3ReO7 undergo a structure transition at 270 and 350 K, respectively. The Ho3ReO7 is paramagnetic down to 1.8 K.  相似文献   

3.
We have prepared 14 new AABB′O6 perovskites which possess a rock salt ordering of the B-site cations and a layered ordering of the A-site cations. The compositions obtained are NaLnMnWO6 (Ln=Ce, Pr, Sm, Gd, Dy, and Ho) and NaLnMgWO6 (Ln=Ce, Pr, Sm, Eu, Gd, Tb, Dy, and Ho). The samples were structurally characterized by powder X-ray diffraction which has revealed metrically tetragonal lattice parameters for compositions with Ln=Ce, Pr and monoclinic symmetry for compositions with smaller lanthanides. Magnetic susceptibility vs. temperature measurements have found that all six NaLnMnWO6 compounds undergo antiferromagnetic ordering at temperatures between 10 and 13 K. Several compounds show signs of a second magnetic phase transition. One sample, NaPrMnWO6, appears to pass through at least three magnetic phase transitions within a narrow temperature range. All eight NaLnMgWO6 compounds remain paramagnetic down to 2 K revealing that the ordering of the Ln3+ cations in the NaLnMnWO6 compounds is induced by the ordering of the Mn2+ sub-lattice.  相似文献   

4.
Magnetic properties of double perovskite compounds Ba2HoRuO6 and Ba2HoIrO6 have been reported. Powder X-ray and neutron diffraction measurements show that these compounds have a cubic perovskite-type structure with the space group and the 1:1 ordered arrangement of Ho3+ and Ru5+ (or Ir5+) over the 6-coordinate B sites. Results of the magnetic susceptibility and specific heat measurements show that Ba2HoRuO6 exhibits two magnetic anomalies at 22 and 50 K. Analysis of the temperature dependence of magnetic specific heat indicates that the anomaly at 50 K is due to the antiferromagnetic ordering of Ru5+ ions and that the anomaly at 22 K is ascribable to the magnetic interaction between Ho3+ ions. Neutron diffraction data collected at 10 and 35 K show that the Ba2HoRuO6 has a long range antiferromagnetic ordering involving both Ho3+ and Ru5+ ions. Each of their magnetic moments orders in a Type I arrangement and these magnetic moments are anti-parallel in the ab-plane with each other. The magnetic moments are aligned along the c-direction. On the other hand, Ba2HoIrO6 is paramagnetic down to 1.8 K.  相似文献   

5.
Magnetic properties of the 6H-perovskite-type oxides Ba3LnIr2O9 (Ln=La and Nd: monoclinic; Ln=Sm-Yb: hexagonal symmetry) were investigated. For all the title compounds, a specific heat anomaly was found at 5.3-17.4 K. At the corresponding temperatures, the magnetic susceptibilities show a slight variation in its gradient. These magnetic anomalies suggest the magnetic ordering of the magnetic moments (S=1/2) remaining in the Ir4.5+2O9 face-shared bioctahedra. In addition, the Ln3+ ions show the onset of the antiferromagnetic ordering around these temperatures. The Ba3NdIr2O9 only shows a ferromagnetic behavior below 17.4 K with a remnant magnetization of 1.25 μB. This behavior may be due to the ferromagnetic ordering of the Nd3+ moments.  相似文献   

6.
The crystal structures and magnetic properties of the quaternary lanthanide oxides Ba6Ln2Fe4O15 (Ln=Pr and Nd) are reported. They crystallize in a hexagonal structure with space group P63mc and have the “Fe4O15 cluster” consisting of one FeO6 octahedron and three FeO4 tetrahedra. Measurements of the magnetic susceptibility, specific heat, and powder neutron diffraction reveal that this cluster behaves as a spin tetramer with a ferrimagnetic ground state of ST=5 even at room temperature. The cluster moments show a long-range antiferromagnetic ordering at 23.2 K (Ln=Pr) and 17.8 K (Nd), and the magnetic moments of the Ln3+ ions also order cooperatively. By applying the magnetic field (∼2 T), this antiferromagnetic ordering of the clusters changes to a ferromagnetic one. This result indicates that there exists a competition in the magnetic interaction between the clusters.  相似文献   

7.
Structures and magnetic and electrical properties of quadruple perovskites containing rare earths Ba4LnM3O12 (Ln=rare earths; M=Ru, Ir) were investigated. They crystallize in the 12L-perovskite-type structure. Three MO6 octahedra are connected to each other by face-sharing and form a M3O12 trimer. The M3O12 trimers and LnO6 octahedra are alternately linked by corner-sharing, forming the perovskite-type structure with 12 layers. For Ln=Ce, Pr, and Tb, both the Ln and M ions are in the tetravalent state (Ba4Ln4+M4+3O12), and for other Ln ions, Ln ions are in the trivalent state and the mean oxidation state of M ions is +4.33 (Ba4Ln3+M4.33+3O12). All the Ba4Ln3+Ru4.33+3O12 compounds show magnetic ordering at low temperatures, while any of the corresponding iridium-containing compounds Ba4Ln3+Ir4.33+3O12 is paramagnetic down to 1.8 K. Ba4Ce4+Ir4+3O12 orders antiferromagnetically at 10.5 K, while the corresponding ruthenium-containing compound Ba4Ce4+Ru4+3O12 is paramagnetic. These magnetic results were well understood by the magnetic behavior of M3O12. The effective magnetic moments and the entropy change for the magnetic ordering show that the trimers Ru4.33+3O12 and Ir4+3O12 have the S= ground state, and in other cases there is no magnetic contribution from the trimers Ru4+3O12 or Ir4.33+3O12.Measurements of the electrical resistivity of Ba4LnM3O12 and its analysis show that these compounds demonstrate two-dimensional Mott-variable range hopping behavior.  相似文献   

8.
Magnetic properties and structural transitions of ternary rare-earth transition-metal oxides Ln3MO7 (Ln=rare earths, M=transition metals) were investigated. In this study, we prepared a series of molybdates Ln3MoO7 (Ln=La-Gd). They crystallize in an orthorhombic superstructure of cubic fluorite with space group P212121, in which Ln3+ ions occupy two different crystallographic sites (the 8-coordinated and 7-coordinated sites). All of these compounds show a phase transition from the space group P212121 to Pnma in the temperature range between 370 and 710 K. Their magnetic properties were characterized by magnetic susceptibility measurements from 1.8 to 400 K and specific heat measurements from 0.4 to 400 K. Gd3MoO7 shows an antiferromagnetic transition at 1.9 K. Measurements of the specific heat for Sm3MoO7 and the analysis of the magnetic specific heat indicate a “two-step” antiferromagnetic transition due to the ordering of Sm magnetic moments in different crystallographic sites, i.e., with decreasing temperature, the antiferromagnetic ordering of the 7-coordinated Sm ions occur at 2.5 K, and then the 8-coordinated Sm ions order at 0.8 K. The results of Ln3MoO7 were compared with the magnetic properties and structural transitions of Ln3MO7 (M=Nb, Ru, Sb, Ta, Re, Os, or Ir).  相似文献   

9.
Unique magnetic properties of a ternary uranate Ba2U2O7 are reported. Magnetic susceptibility measurements reveal that this compound undergoes a magnetic transition at 19 K. Below this temperature, magnetic hysteresis was observed. The results of the low-temperature specific heat measurements below 30 K support the existence of the second-order magnetic transition at 19 K. Ba2U2O7 undergoes a canted antiferromagnetic ordering at this temperature. The magnetic anomaly which sets in at 58 K may be due to the onset of one-dimensional magnetic correlations associated with the linear chains formed by U ions. The analysis of the experimental magnetic susceptibility data in the paramagnetic temperature region gives the effective magnetic moment μeff=0.73 μB, the Weiss constant θ=−10 K, and the temperature-independent paramagnetic susceptibility χTIP=0.14×10−3 emu/mole.The magnetic susceptibility results and the optical absorption spectrum were analyzed on the basis of an octahedral crystal field model. The energy levels of Ba2U2O7 and the crystal field parameters were determined.  相似文献   

10.
Subsolidus phase relations in the systems Li2MoO4-K2MoO4-Ln2(MoO4)3 (Ln=La, Nd, Dy, Er) were determined. Formation of LiKLn2(MoO4)4 was confirmed in the systems with Ln=Nd, Dy, Er at the LiLn(MoO4)2-KLn(MoO4)2 joins. No intermediate phases of other compositions were found. No triple molybdates exist in the system Li2MoO4-K2MoO4-La2(MoO4)3. The join LiLa(MoO4)2-KLa(MoO4)2 is characterized by formation of solid solutions.Triple molybdates LiKLn2(MoO4)4 for Ln=Nd-Lu, Y were synthesized by solid state reactions (single phases with ytterbium and lutetium were not prepared). Crystal and thermal data for these molybdates were determined. Compounds LiKLn2(MoO4)4 form isostructural series and crystallized in the monoclinic system with the unit cell parameters a=5.315-5.145 Å, b=12.857-12.437 Å, c=19.470-19.349 Å, β=92.26-92.98°. When heated, the compounds decompose in solid state to give corresponding double molybdates. The dome-shaped curve of the decomposition temperatures of LiMLn2(MoO4)4 has the maximum in the Gd-Tb-Dy region.While studying the system Li2MoO4-K2MoO4-Dy2(MoO4)3 we revealed a new low-temperature modification of KDy(MoO4)2 with the triclinic structure of α-KEu(MoO4)21 (a=11.177(2) Å, b=5.249(1) Å, c=6.859(1) Å, α=112.33(2)°, β=111.48(1)°, γ=91.30(2)°, space group , Z=2).  相似文献   

11.
The lanthanide sulphate octahydrates Ln2(SO4)3·8H2O (Ln=Ho, Tm) and the respective tetrahydrate Pr2(SO4)3·4H2O were obtained by evaporation of aqueous reaction mixtures of trivalent rare earth oxides and sulphuric acid at 300 K. Ln2(SO4)3·8H2O (Ln=Ho, Tm) crystallise in space group C2/c (Z=4, aHo=13.4421(4) Å, bHo=6.6745(2) Å, cHo=18.1642(5) Å, βHo=102.006(1) Å3 and aTm=13.4118(14) Å, bTm=6.6402(6) Å, cTm=18.1040(16) Å, βTm=101.980(8) Å3), Pr2(SO4)3·4H2O adopts space group P21/n (a=13.051(3) Å, b=7.2047(14) Å, c=13.316(3) Å, β=92.55(3) Å3). The vibrational and optical spectra of Ho2(SO4)3·8H2O and Pr2(SO4)3·4H2O are also reported.  相似文献   

12.
The crystal and magnetic structures of Sr2(Fe1−xVx)MoO6 (0.03?x?0.1) compounds are refined by alternately using X-ray powder diffraction (XRD) and neutron powder diffraction (NPD) data collected at room temperature. The refinement results reveal that the V atoms selectively occupy the Mo sites instead of the Fe sites for x?0.1. The 3d/4d cation ordering decreases with the increase of the V content. Slight distortions in the lattice and metal octahedra are shown at 300 K, and the distortions increase at 4 K. The magnetic structure at 4 K can be modeled equally well with the moments aligning along [001], [110] or [111] directions. The total moments derived from the NPD data for the [110] and [111] direction models agree well with the magnetic measurements, whereas the [001] model leads to a smaller total moment. Bond valence analysis indicates that Sr ions are properly located in the structure and Mo ions are compatible with both the Fe sites and the Mo sites. The electronic effects are suggested to be responsible for the selective occupation of the V on the Mo sites due to the different distortions of the FeO6 and MoO6 octahedra.  相似文献   

13.
We describe the preparation and structural characterization of four In-containing perovskites from neutron powder diffraction (NPD) and X-ray powder diffraction (XRPD) data. Sr3In2B″O9 and Ba(In2/3B1/3)O3 (B″=W, U) were synthesized by standard ceramic procedures. The crystal structure of the W-containing perovskites and Ba(In2/3U1/3)O3 have been revisited based on our high-resolution NPD and XRPD data, while for the new U-containing perovskite Sr3In2UO9 the structural refinement was carried out from high-resolution XRPD data. At room temperature, the crystal structure for the two Sr phases is monoclinic, space group P21/n, where the In atoms occupy two different sites Sr2[In]2d[In1/3B2/3]2cO6, with a=5.7548(2) Å, b=5.7706(2) Å, c=8.1432(3) Å, β=90.01(1)° for B″=W and a=5.861(1) Å, b=5.908(1) Å, c=8.315(2) Å, β=89.98(1)° for B″=U. The two phases with A=Ba should be described in a simple cubic perovskite unit cell (S.G. Pmm) with In and B″ distributed at random at the octahedral sites, with a=4.16111(1) Å and 4.24941(1) Å for W and U compounds, respectively.  相似文献   

14.
Ternary lanthanide-molybdenum oxides Ln3MoO7 (Ln=La, Pr, Nd, Sm, Eu) have been prepared. Their structures were determined by X-ray diffraction measurements. They crystallize in a superstructure of cubic fluorite and the space group is P212121. The Mo ion is octahedrally coordinated by six oxygens and the slightly distorted octahedra share corners forming a zig-zag chain parallel to the b-axis. These compounds have been characterized by magnetic susceptibility and specific heat measurements. The La3MoO7 shows complex magnetic behavior at 150 and 380 K. Below these temperatures, there is a large difference in the temperature-dependence of the magnetic susceptibility measured under zero-field-cooled condition and under field-cooled condition. The Nd3MoO7 show a clear antiferromagnetic transition at 2.5 K. From the susceptibility measurements, both Pr3MoO7 and Sm3MoO7 show the existence of magnetic anomaly at 8.0 and 2.5 K, respectively. The results of the specific heat measurements also show anomalies at the corresponding magnetic transition temperatures. The differential scanning calorimetry measurements indicate that two phase-transitions occur for any Ln3MoO7 compound in the temperature range between 370 and 710 K.  相似文献   

15.
A series of rare-earth iron borates having general formula LnFe3(BO3)4 (Ln=Y, La-Nd, Sm-Ho) were prepared and their magnetic properties have been investigated by the magnetic susceptibility, specific heat, and 57Fe Mössbauer spectrum measurements. These borates show antiferromagnetic transitions at low temperatures and their magnetic transition temperatures increase with decreasing Ln3+ ionic radius from 22 K for LaFe3(BO3)4 to 40 K for TbFe3(BO3)4. In addition, X-ray diffraction, specific heat, and differential thermal analysis (DTA) measurements indicate that the phase transition occurs for the LnFe3(BO3)4 compounds with Ln=Eu-Ho, Y, and its transition temperature increases remarkably with decreasing Ln3+ ionic radius from 88 K for Ln=Eu to 445 K for Ln=Y.  相似文献   

16.
The structure of phase IV of methylammonium lead bromide, CH3ND3PbBr3, is shown from Rietveld refinement of neutron powder diffraction data to be centrosymmetric, with space group Pnma: Z=4; a=7.9434(4) Å, b=11.8499(5) Å, c=8.5918(4) Å at 11 K; Rwp=2.34% Rp=1.81%. This corresponds to one of the pure tilt transitions, a-b+a, commonly observed in perovskites. Additional distortions not required by pure tilting are found in the PbBr6 octahedra, and it appears that the structure optimizes the hydrogen bonding between the methylammonium cation and the framework. It is likely that the lowest temperature phase of the corresponding iodide also has this structure. The structure is compared to the available data for that of other Pnma perovskites. A brief comparison to the higher temperature phases in which the methylammonium ion is disordered is given.  相似文献   

17.
The magnetic structure of the Fe2P-type R6CoTe2 phases (R=Gd-Er, space group P6¯2m) has been investigated through magnetization measurement and neutron powder diffraction. All phases demonstrate high-temperature ferromagnetic and low-temperature transitions: TC=220 K and TCN=180 K for Gd6CoTe2, TC=174 K and TCN=52 K for Tb6CoTe2, TC=125 K and TCN=26 K for Dy6CoTe2, TCN=60 K and TN=22 K for Ho6CoTe2 and TCN∼30 K and TN∼14 K for Er6CoTe2.Between 174 and 52 K Tb6CoTe2 has a collinear magnetic structure with K0=[0, 0, 0] and with magnetic moments along the c-axis, whereas below 52 K it adopts a non-collinear ferromagnetic one.Below 60 K the magnetic structure of Ho6CoTe2 is that of a non-collinear ferromagnet. The holmium magnetic components with a K0=[0, 0, 0] wave vector are aligned ferromagneticaly along the c-axis, whereas the magnetic component with a K1=[1/2, 1/2, 0] wave vector are arranged in the ab plane. The low-temperature magnetic transition at ∼22 K coincides with the reorientation of the Ho magnetic component with the K0 vector from the collinear to the non-collinear state.Below 30 K Er6CoTe2 shows an amplitude-modulate magnetic structure with a collinear arrangement of magnetic components with K0=[0, 0, 0] and K1=[1/2, 1/2, 0]. The low-temperature magnetic transition at ∼14 K corresponds to the variation in the magnitudes of the MErK0 and MErK1 magnetic components.In these phases, no local moment was detected on the cobalt site.The magnetic entropy of Gd6CoTe2 increases from ΔSmag=−4.5 J/kg K at 220 K up to ΔSmag=−6.5 J/kg K at 180 K for the field change Δμ0H=0-5 T.  相似文献   

18.
The structures of eight members of the series of double perovskites of the type Ba2LnB′O6 (Ln=La3+-Sm3+ and Y3+ and B′=Nb5+ and Ta5+) were examined both above and below room temperature using synchrotron X-ray powder diffraction. The La3+ and Pr3+ containing compounds had an intermediate rhombohedral phase whereas the other tantalates and niobates studied have a tetragonal intermediate. This difference in symmetry appears to be a consequence of the larger size of the La3+ and Pr3+ cations compared to the other lanthanides. The temperature range over which the intermediate symmetry is stable is reduced in those compounds near the point where the preferred intermediate symmetry changes from tetragonal to rhombohedral. In such compounds the transition to the cubic phase involves higher order terms in the Landau expression. This suggests that in this region the stability of the two intermediate phases is similar.  相似文献   

19.
Ternary rare earth antimonates Ln3SbO7 (Ln=rare earths) were prepared and their structures were determined by X-ray diffraction measurements. They crystallize in an orthorhombic superstructure of cubic fluorite (space group Cmcm for Ln=La, Pr, Nd; C2221 for Ln=Nd-Lu), in which Ln3+ ions occupy two different crystallographic sites (the 8-coordinated and 7-coordinated sites). Their magnetic properties were characterized by magnetic susceptibility and specific heat measurements from 1.8 to 400 K. The Ln3SbO7 (Ln=Nd, Gd-Ho) compounds show an antiferromagnetic transition at 2.2-3.2 K. Sm3SbO7 and Eu3SbO7 show van Vleck paramagnetism. Measurements of the specific heat down to 0.4 K for Gd3SbO7 and the analysis of the magnetic specific heat indicate that the antiferromagnetic ordering of the 8-coordinated Gd ions occur at 2.6 K, and the 7-coordinated Gd ions order at a furthermore low temperature.  相似文献   

20.
B-site disordered RFe0.5V0.5O3 compounds, with R=La, Nd, Eu and Y, have been prepared by solid-state reaction technique and their structures and magnetic properties have been investigated through X-ray powder diffraction, time-of-flight neutron powder diffraction and magnetization measurements at temperatures ranging from 5 to 700 K. The four compounds can be described as distorted perovskites with space group symmetry Pbnm and a+bb tilt system. The studied compounds also show antiferromagnetic ordering with Neel temperatures of 299, 304, 304, and 335 K respectively. The magnetic structures of R=La, Nd and Y compounds were determined from the neutron powder diffraction as Gz with observed magnetic moments of 2.55, 2.54 and 2.69μB at 30, 40 and 40 K, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号