首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The quaternary manganese tin bismuth selenide, Mn1.34Sn6.66Bi8Se20 was synthesized by combining constituent elements at 723 K. Single crystal structure determination revealed that Mn1.34Sn6.66Bi8Se20 is isostructural to the mineral pavonite, AgBi3S5, crystallizing in the monoclinic space group C2/m (#12) with a=13.648(3) Å; b=4.175(1) Å; c=17.463(4) Å; β=93.42(3)°. In the structure, two kinds of layered modules, denoted A and B, alternate along [0 0 1]. Module A consists of paired chains of face-sharing monocapped trigonal prisms (around Bi/Sn) separated by a single chain of edge-sharing octahedra (around Mn/Sn). Module B represents a NaCl-type fragment of edge-sharing [(Bi/Sn)Se6] octahedra. Mn1.34Sn6.66Bi8Se20 is an n-type narrow gap semiconductor with Eg∼0.29 eV. At 300 K, thermopower, electrical conductivity and lattice thermal conductivity values are −123 μV/K, 47 S/cm and 0.6 W/m K, respectively. Mn1.34Sn6.66Bi8Se20 is paramagnetic at high temperatures and undergoes antiferromagnetic transition at TN=10 K.  相似文献   

2.
Quaternary selenides Sn2Pb5Bi4Se13 and Sn8.65Pb0.35Bi4Se15 were synthesized from the elements in sealed silica tubes; their crystal structures were determined by single-crystal and powder X-ray diffraction. Both compounds crystallize in monoclinic space group C2/m (No.12), with lattice parameters of Sn2Pb5Bi4Se13: a = 14.001(6) Å, b = 4.234(2) Å, c = 23.471(8) Å, V = 1376.2(1) Å3, R1/wR2 = 0.0584/0.1477, and GOF = 1.023; Sn8.65Pb0.35Bi4Se15: a = 13.872(3) Å, b = 4.2021(8) (4) Å, c = 26.855(5) Å, V = 1557.1(5) Å3, R1/wR2 = 0.0506/0.1227, and GOF = 1.425. These compounds exhibit tropochemical cell-twinning of NaCl-type structures with lillianite homologous series L(4, 5) and L(4, 7) for Sn2Pb5Bi4Se13 and Sn8.65Pb0.35Bi4Se15, respectively. Measurements of electrical conductivity indicate that these materials are semiconductors with narrow band gaps; Sn2Pb5Bi4Se13 is n-type, whereas Sn8.65Pb0.35Bi4Se15 is a p-type semiconductor with Seebeck coefficients −80(5) and 178(7) μV/K at 300 K, respectively.  相似文献   

3.
A new organically templated indium selenide, [C6H16N2][In2Se3(Se2)], has been prepared hydrothermally from the reaction of indium, selenium and trans-1,4-diaminocyclohexane in water at 170 °C. This material was characterised by single-crystal and powder X-ray diffraction, thermogravimetric analysis, UV-vis diffuse reflectance spectroscopy, FT-IR and elemental analysis. The compound crystallises in the monoclinic space group C2/c (a=12.0221(16) Å, b=11.2498(15) Å, c=12.8470(17) Å, β=110.514(6)°). The crystal structure of [C6H16N2][In2Se3(Se2)] contains anionic chains of stoichiometry [In2Se3(Se2)]2−, which are aligned parallel to the [1 0 1] direction, and separated by diprotonated trans-1,4-diaminocyclohexane cations. The [In2Se3(Se2)]2− chains, which consist of alternating four-membered [In2Se2] and five-membered [In2Se3] rings, contain perselenide (Se2)2− units. UV-vis diffuse reflectance spectroscopy indicates that [C6H16N2][In2Se3(Se2)] has a band gap of 2.23(1) eV.  相似文献   

4.
The quaternary alkali-metal gallium selenostannates, Na2−xGa2−xSn1+xSe6 and AGaSnSe4 (A=K, Rb, and Cs), were synthesized by reacting alkali-metal selenide, Ga, Sn, and Se with a flame melting-rapid cooling method. Na2−xGa2−xSn1+xSe6 crystallizes in the non-centrosymmetric space group C2 with cell constants a=13.308(3) Å, b=7.594(2) Å, c=13.842(3) Å, β=118.730(4)°, V=1226.7(5) Å3. α-KGaSnSe4 crystallizes in the tetragonal space group I4/mcm with a=8.186(5) Å and c=6.403(5) Å, V=429.1(5) Å3. β-KGaSnSe4 crystallizes in the space group P21/c with cell constants a=7.490(2) Å, b=12.578(3) Å, c=18.306(5) Å, β=98.653(5)°, V=1705.0(8) Å3. The unit cell of isostructural RbGaSnSe4 is a=7.567(2) Å, b=12.656(3) Å, c=18.277(4) Å, β=95.924(4)°, V=1741.1(7) Å3. CsGaSnSe4 crystallizes in the orthorhombic space group Pmcn with a=7.679(2) Å, b=12.655(3) Å, c=18.278(5) Å, V=1776.1(8) Å3. The structure of Na2−xGa2−xSn1+xSe6 consists of a polar three-dimensional network of trimeric (Sn,Ga)3Se9 units with Na atoms located in tunnels. The AGaSnSe4 possess layered structures. The compounds show nearly the same Raman spectral features, except for Na2−xGa2−xSn1+xSe6. Optical band gaps, determined from UV-Vis spectroscopy, range from 1.50 eV in Na2−xGa2−xSn1+xSe6 to 1.97 eV in CsGaSnSe4. Cooling of the melts of KGaSnSe4 and RbGaSnSe4 produces only kinetically stable products. The thermodynamically stable product is accessible under extended annealing, which leads to the so-called γ-form (BaGa2S4-type) of these compounds.  相似文献   

5.
Over 100 samples were prepared as (Ga,In)4(Sn,Ti)n−4O2n−2, n=6, 7, and 9 by solid-state reaction at 1400 °C and characterized by X-ray diffraction. Nominally phase-pure beta-gallia-rutile intergrowths were observed in samples prepared with n=9 (0.17?x?0.35 and 0?y?0.4) as well as in a few samples prepared with n=6 and 7. Rietveld analysis of neutron time-of-flight powder diffraction data were conducted for three phase-pure samples. The n=6 phase Ga3.24In0.76Sn1.6Ti0.4O10 is monoclinic, P2/m, with Z=2 and a=11.5934(3) Å, b=3.12529(9) Å, c=10.6549(3) Å, β=99.146(1)°. The n=7 phase Ga3.24In0.76Sn2.4Ti0.6O12 is monoclinic, C2/m, with Z=2 and a=14.2644(1) Å, b=3.12751(2) Å, c=10.6251(8) Å, β=108.405(1)°. The n=9 phase Ga3.16In0.84Sn4TiO16 is monoclinic, C2/m, with Z=2 a=18.1754(2) Å, b=3.13388(3) Å, c=10.60671(9) Å, β=102.657(1)°. All of the structures are similar in that they possess distorted hexagonal tunnels parallel to the [010] vector.  相似文献   

6.
The binary compound Rh3Bi14 was synthesized from the elements. The compound is isostructural with Rh3Bi12Br2, crystallizes with the orthorhombic space group Fddd (no. 70) and lattice parameters a=6.8959(15) Å, b=17.379(3) Å, c=31.758(6) Å. The crystal structure consists of a three-dimensional (3D) framework of edge-sharing cubes and square antiprisms (RhBi8/2). It is closely related to the intermetallic compound RhBi4, in which two Y-like frameworks of antiprisms interpenetrate. In Rh3Bi14 and Rh3Bi12Br2, additional bismuth and bromine anions, respectively, fill the channels of the 3D polyhedral framework formed by covalently bonded rhodium and bismuth atoms. High-pressure X-ray powder diffraction data from synchrotron measurements of Rh3Bi14 and Rh3Bi12Br2 indicate a high stability of both compounds in the investigated range from ambient pressure to ca. 30 GPa at ambient temperature.  相似文献   

7.
Two new compounds Ca0.5Bi3V2O10 and Sr0.5Bi3V2O10 have been synthesized in the ternary system: MO-Bi2O3-V2O5 system (M=M2+). The crystal structure of Sr0.5Bi3V2O10 has been determined from single crystal X-ray diffraction data, space group and Z=2, with cell parameters a=7.1453(3) Å, b=7.8921(3) Å, c=9.3297(3) Å, α=106.444(2)°, β=94.088(2)°, γ=112.445(2)°, V=456.72(4) Å3. Ca0.5Bi3V2O10 is isostructural with Sr0.5Bi3V2O10, with, a=7.0810(2) Å, b=7.8447(2) Å, c=9.3607(2) Å, α=106.202(1)°, β=94.572(1)°, γ=112.659(1)°, V=450.38(2) Å3 and its structure has been refined by Rietveld method using powder X-ray data. The crystal structure consists of infinite chains of (Bi2O2) along c-axis formed by linkage of BiO8 and BiO6 polyhedra interconnected by MO8 polyhedra forming 2D layers in ac plane. The vanadate tetrahedra are sandwiched between these layers. Conductivity measurements give a maximum conductivity value of 4.54×10−5 and 3.63×10−5 S cm−1 for Ca0.5Bi3V2O10 and Sr0.5Bi3V2O10, respectively at 725 °C.  相似文献   

8.
Three new compounds, Cs2Bi2ZnS5, Cs2Bi2CdS5, and Cs2Bi2MnS5, have been synthesized from the respective elements and a reactive flux Cs2S3 at 973 K. The compounds are isostructural and crystallize in a new structure type in space group Pnma of the orthorhombic system with four formula units in cells of dimensions at 153 K of a=15.763(3), b=4.0965(9), c=18.197(4) Å, V=1175.0(4) Å3 for Cs2Bi2ZnS5; a=15.817(2), b=4.1782(6), c=18.473(3)  Å, V=1220.8(3)  Å3 for Cs2Bi2CdS5; and a=15.830(2), b=4.1515(5), c=18.372(2) Å, V=1207.4(2) Å3 for Cs2Bi2MnS5. The structure is composed of two-dimensional 2[Bi2MS52−] (M=Zn, Cd, Mn) layers that stack perpendicular to the [100] axis and are separated by Cs+ cations. The layers consist of edge-sharing 1[Bi2S66−] and 1[MS34−] chains built from BiS6 octahedral and MS4 tetrahedral units. Two crystallographically unique Cs atoms are coordinated to S atoms in octahedral and monocapped trigonal prismatic environments. The structure of Cs2Bi2MS5, is related to that of Na2ZrCu2S4 and those of the AMMQ3 materials (A=alkali metal, M=rare-earth or Group 4 element, M′= Group 11 or 12 element, Q=chalcogen). First-principles theoretical calculations indicate that Cs2Bi2ZnS5 and Cs2Bi2CdS5 are semiconductors with indirect band gaps of 1.85 and 1.75 eV, respectively. The experimental band gap for Cs2Bi2CdS5 is ≈1.7 eV, as derived from its optical absorption spectrum.  相似文献   

9.
Bi2Se3 nanosheets and nanotubes were prepared by a hydrothermal co-reduction method at 150, 180, 200, and 210 °C. Bi2Se3 nanosheets, nanobelts and nanotubes were obtained. The Bi2Se3 nanoflakes are 50-500 nm in width and 2-5 nm in thickness. The Bi2Se3 nanotubes are 5-10 nm in diameter, 80-120 nm in length, and 1.3 nm in wall thickness. X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, and electron diffraction were employed to characterize the products. Experimental results showed that the nanosheets and the nanotubes are hexagonal in structure with a=4.1354 Å and c=27.4615 Å. A possible formation and crystal growth mechanism of Bi2Se3 nanostructures is proposed.  相似文献   

10.
Quaternary chalcogenides PbxSn6−xBi2Se9 (x=0-4.36) were synthesized with solid-state methods; their structures were determined from the X-ray diffraction of single crystals. PbxSn6−xBi2Se9 crystallizes in an orthorhombic space group Cmcm (No. 63); the structure features a three-dimensional framework containing slabs of NaCl-(3 1 1) type that exhibits identical layers containing seven octahedra units, which expand along the direction [0 1 0]. Each slab contains fused rectangular units that are connected to each other with M-Se contacts in a distorted octahedral environment. Calculations of the band structure, measurements of Seebeck coefficient and electrical conductivity confirm that these compounds are n-type semiconductors with small band gaps and large electrical conductivities.  相似文献   

11.
Yb3Cu6Sn5, Yb5Cu11Sn8 and Yb3Cu8Sn4 compounds were prepared in sealed Ta crucibles by induction melting and subsequent annealing. The crystal structures of Yb3Cu6Sn5 and Yb5Cu11Sn8 were determined from single crystal diffractometer data: Yb3Cu6Sn5, isotypic with Dy3Co6Sn5, orthorhombic, Immm, oI28, a=4.365(1) Å, b=9.834(3) Å, c=12.827(3) Å, Z=2, R=0.019, 490 independent reflections, 28 parameters; Yb5Cu11Sn8 with its own structure, orthorhombic, Pmmn, oP48, a=4.4267(6) Å, b=22.657(8) Å, c=9.321(4) Å, Z=2, R=0.047, 1553 independent reflections, 78 parameters. Both compounds belong to the BaAl4-derived defective structures, and are closely related to Ce3Pd6Sb5 (oP28, Pmmn). The crystal structure of Yb3Cu8Sn4, isotypic with Nd3Co8Sn4, was refined from powder data by the Rietveld method: hexagonal, P63mc, hP30, a=9.080(1) Å, c=7.685(1) Å, Z=2, Rwp=0.040. It is an ordered substitution derivative of the BaLi4 type (hP30, P63/mmc). All compounds show strong Cu-Sn bonds with a length reaching 2.553(3) Å in Yb5Cu11Sn8.  相似文献   

12.
The quaternary compound Rb2BaNb2Se11 has been synthesized by reacting Nb metal with an in situ formed flux of Rb2Se3, BaSe and Se at 773 K. Rb2BaNb2Se11 crystallizes in the monoclinic space group P21/c with four formula units and lattice parameters a=7.8438(5) Å, b=13.6959(6) Å, c=17.0677(13) Å, β=97.917(9)°. The structure consists of one-dimensional anionic chains formed by interconnection of dimeric [Nb2Se11] units. The chains are directed along the crystallographic c-axis with Rb+ and Ba2+ ions being located between the chains. The [Nb2Se11] units are formed by face sharing of two NbSe7 bipyramids and are joined by Se22− dianions to form infinite 1[Nb2Se114−] chains. The compound was characterized with infrared spectroscopy in the FIR region, Raman and UV/Vis diffuse reflectance spectroscopy.  相似文献   

13.
The anion-excess ordered fluorite-related phase Ba4Bi3F17 has been synthesized by a solid state reaction of BaF2 and BiF3 at 873 K. The crystal structure of Ba4Bi3F17 has been studied using electron diffraction and X-ray powder diffraction (a=11.2300(2) Å, c=20.7766(5) Å, S.G. , RI=0.020, RP=0.036). Interstitial fluorine atoms in the Ba4Bi3F17 structure are considered to form isolated cuboctahedral 8 : 12 : 1 clusters. The structural relationship between Ba4Bi3F17 and similar rare-earth-based phases is discussed.  相似文献   

14.
Subsolidus phase relationships in the In2O3-WO3 system at 800-1400°C were investigated using X-ray diffraction. Two binary-oxide phases—In6WO12 and In2(WO4)3—were found to be stable over the range 800-1200°C. Heating the binary-oxide phases above 1200°C resulted in the preferential volatilization of WO3. Rietveld refinement was performed on three structures using X-ray diffraction data from nominally phase-pure In6WO12 at room temperature and from nominally phase-pure In2(WO4)3 at 225°C and 310°C. The indium-rich phase, In6WO12, is rhombohedral, space group (rhombohedral), with Z=1, a=6.22390(4) Å, α=99.0338(2)° [hexagonal axes: aH=9.48298(6) Å, c=8.94276(6) Å, aH/c=0.9430(9)]. In6WO12 can be viewed as an anion-deficient fluorite structure in which 1/7 of the fluorite anion sites are vacant. Indium tungstate, In2(WO4)3, undergoes a monoclinic-orthorhombic transition around 250°C. The high-temperature polymorph is orthorhombic, space group Pnca, with a=9.7126(5) Å, b=13.3824(7) Å, c=9.6141(5) Å, and Z=4. The low-temperature polymorph is monoclinic, space group P21/a, with a=16.406(2) Å, b=9.9663(1) Å, c=19.099(2) Å, β=125.411(2)°, and Z=8. The structures of the two In2(WO4)3 polymorphs are similar, consisting of a network of corner sharing InO6 octahedra and WO4 tetrahedra.  相似文献   

15.
The hydrothermal syntheses, single crystal structures, and some properties of Ba2MnIIMn2III(SeO3)6 and PbFe2(SeO3)4 are reported. These related phases contain three-dimensional frameworks of vertex (FeO6) and vertex/edge linked (MnO6) octahedra and SeO3 pyramids. In each case, the MO6/SeO3 framework encloses two types of 8 ring channels, one of which encapsulates the extra-framework cations and one of which provides space for the SeIV lone pairs. Crystal data: Ba2Mn3(SeO3)6, Mr=1201.22, monoclinic, P21/c (No. 14), a=5.4717 (3) Å, b=9.0636 (4) Å, c=17.6586 (9) Å, β=94.519 (1)°, V=873.03 (8) Å3, Z=2, R(F)=0.031, wR(F2)=0.070; PbFe2(SeO3)4, Mr=826.73, triclinic, (No. 2), a=5.2318 (5) Å, b=6.7925 (6) Å, c=7.6445 (7) Å, α=94.300 (2)°, β=90.613 (2)°, γ=95.224 (2)°, V=269.73 (4) Å3, Z=1, R(F)=0.051, wR(F2)=0.131.  相似文献   

16.
Two new ternary ytterbium transition metal stannides, namely, Yb3CoSn6 and Yb4Mn2Sn5, have been obtained by solid-state reactions of the corresponding pure elements in welded tantalum tubes at high temperature. Their crystal structures have been established by single-crystal X-ray diffraction studies. Yb3CoSn6 crystallizes in the orthorhombic space group Cmcm (no. 63) with cell parameters of a=4.662(2), b=15.964(6), c=13.140(5) Å, V=978.0(6) Å3, and Z=4. Its structure features a three-dimensional (3D) open-framework composed of unusual [CoSn3] layers interconnected by zigzag Sn chains, forming large tunnels along the c-axis which are occupied by the ytterbium cations. Yb4Mn2Sn5 is monoclinic space group C2/m (no. 12) with cell parameters of a=16.937(2), b=4.5949(3), c=7.6489(7) Å, β=106.176(4)°, V=571.70(8) Å3, and Z=2. It belongs to the Mg5Si6 structure type and its anionic substructure is composed of parallel [Mn2Sn2] ladders interconnected by unusual zigzag [Sn3] chains, forming large tunnels along the c-axis, which are filled by the ytterbium cations. Band structure calculations based on density function theory methods were also made for both compounds.  相似文献   

17.
Ba4LaGe3SbSe13 was prepared by reacting the elements under exclusion of air at 700°C, followed by slow cooling to room temperature. It crystallizes in a new type of the monoclinic space group P21/c, with lattice dimensions of a=1633.30(9) pm, b=1251.15(7) pm, c=1303.21(7) pm, β=103.457(2)°, V=2590.0(2) 106 pm3 (Z=4). The structure contains isolated GeSe4 as well as Ge2Se7 digermanate units. Two of the latter are interconnected via an Sb2Se4 bridge yielding an almost linear complex anion [Ge2Se7-Sb2Se4-Ge2Se7]14−. The oxidation states are assigned to be BaII, LaIII, GeIV, SbIII, and Se−II, in accord with an electronically saturated nonmetal. The lone pair of SbIII reflects itself in highly irregular Se coordination. The red color of the material is indicative of semiconducting behavior with an activation energy of 2.0 eV. Electronic structure calculations based on the LMTO approximation point to a smaller gap, typical for this calculation method. We utilized the COHP tool to explore the bonding character of the different Sb-Se interactions.  相似文献   

18.
Preparation and crystal structure of the novel compound [Bi3I(C4H8O3H2)2(C4H8O3H)5]2Bi8I30 are reported. The title compound is prepared by heating of BiI3 and diethylene glycol at 413 K in a sealed quartz glass tube filled with argon. Deep red single crystals are grown and applied to perform X-ray powder diffraction and X-ray single-crystal diffraction measurements. The compound crystallizes triclinic with space group P-1: Z=2, a=13.217(1) Å, b=15.277(1) Å, c=22.498(1) Å, α=84.33(1), β=73.18(1), γ=67.48(1). [Bi3I(C4H8O3H2)2(C4H8O3H)5]2Bi8I30 comprises the novel polynuclear [Bi8I30]6− anion and [Bi3I(C4H8O3H2)2(C4H8O3H)5]3+ as the cation. Cation as well as the anion can be assumed to represent intermediates between solid BiI3 and BiI3 completely dissolved in diethylene glycol.  相似文献   

19.
Two new ternary bismuth chalcogenides, Bi3In4S10 and Bi14.7In11.3S38, were synthesized from the reactions of binary sulfides via a two-step flux technique. Single-crystal X-ray diffraction analyses indicate that Bi3In4S10 crystallizes in the non-centrosymmetric space group Pm and Bi14.7In11.3S38 crystallizes in the centrosymmetric space group P21/m. Both compounds adopt three-dimensional frameworks. A distinct structural feature in the two structures is the presence of chains of Bi atoms with alternating short Bi-Bi bonds of around 3.1 Å and longer distances of around 4.6 Å. The optical band gaps of 1.42(2) eV for Bi3In4S10 and 1.45(2) eV for Bi14.7In11.3S38 were deduced from the diffuse reflectance spectra.  相似文献   

20.
A tin(II) squarate Sn2O(C4O4)(H2O) was synthesized by hydrothermal technique. It crystallizes in the monoclinic system, space group C2/m (no. 12) with lattice parameters a=12.7380(9) Å, b=7.9000(3) Å, c=8.3490(5) Å, β=121.975(3)°, V=712.69(7) Å3, Z=4. The crystal structure determined with an R=0.042 factor, consists of [(Sn4O10)(H2O)2] units connected from one another in the [101] and [010] directions via squarate groups to form layers separated by Sn(II) lone pairs. This compound presents the same remarkable structural arrangement as observed in the tin-oxo-fluoride Sn2[Sn2O2F4] inorganic compound with Sn(II) lone pairs E(1) and E(2) concentrated in large rectangular-shape tunnels running along [001] direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号