首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 318 毫秒
1.
《Solid State Sciences》2003,5(5):811-819
The effects of trace element doping of TiO2 on the crystal growth and on the anatase-to-rutile phase transformation of TiO2 were investigated. The co-precipitation process, from sulfate solution, of doped (Cr, Fe, V, Nb, Si, P) TiO2 was also studied. The heating temperatures were 473, 673, 873, 993, 1133 K and a higher temperature needed to achieve a rutile content of 98–99%. Traces of reduced titanium were found in freshly calcined anatase by X-ray diffraction. Pure anatase structure was found in 85% of the samples heated below 1000 K. Anatase-to-rutile transformation was accelerated by the mmol% content of Nb, Cr, Si, and Fe in TiO2. Interaction of co-precipitated or impregnated cations was found critical in the phase transformation process. Nb retarded the crystal growth during calcination. Sulfate ions minimized the specific surface area of TiO2 heated at low temperatures. These results of doped TiO2 serve to promote the development of new high-technology TiO2 products for photocatalytic purposes.  相似文献   

2.
Mixed-phase TiO2 nanopowders with different ratios of anatase and rutile have been successfully synthesized using atmospheric pressure plasma jet driven by dual-frequency power sources. The crystal structures of the TiO2 nanopowders were characterized by X-ray diffraction, SAED, HRTEM, and Raman shift spectroscopy. These results indicated that samples possessed anatase and rutile structure, in addition, the crystallinity of the TiO2 nanopowders increased and the chlorine contamination decreased with discharge RF power increasing. The photocatalytic activity of the TiO2 nanopowders was evaluated by decomposition methylene blue solution. The TiO2 nanopowders which were produced at the discharge RF power of 110 W had the highest photocatalytic activity. Optical emission spectroscopy (OES) was used to detect various excited species in the plasma jet. The results indicate that the various RF power significantly changes the intensities of emission lines (Ar, Ar+, Ti, Ti+, Ti2+, Ti3+ and O), which results in the TiO2 nanopowders a mixture of anatase and rutile phases. The nonequilibrium chemical composition could be formed in one step without anneal. It may have potential applications for synthesizing nanosized particles of high crystallinity by reactive nonthermal plasma processing.  相似文献   

3.
According to binding energy calculations in a unit cell model of anatase TiO2, the doping limits for Cr, V, W, Mo, Zr, and Nb are predicted to increase in this order. In our experimental test of doping limits, Cr and W are considered in this series of transition metals, since their low doping limits suggest greater difficulty of doping into anatase structure than the others, thereby providing a challenging test for the prediction. Besides, noble metals such as Ag and Pt are selected for doping into TiO2 for comparison. Thus, our investigation includes twofold research activities. One is to prepare metal-doped TiO2 nanopowders of four different kinds, and the other is to determine the doping limit of each resulting powder. For the former, a sonochemical process has been used to produce metal-doped TiO2 nanoparticles. For the latter, we resorted to electron probe microanalysis. In addition, we performed analysis by X-ray diffraction, transmission electron microscopy, and diffuse reflectance spectroscopy, as well as photocatalytic reaction with methylene blue. Thus, the resulting physicochemical properties of our metal-doped nanoparticles are expected to provide a basis for comparison of doping limits among them.  相似文献   

4.
过渡金属离子置换钛酸纳米管的制备和光催化活性   总被引:4,自引:0,他引:4  
TiO2纳米粉体和纳米膜材料在光催化降解大气和水中的污染物等方面具有广泛的应用[1]。近年来,以TiO2为原料与浓N aO H反应合成的钛酸纳米管具有比其原料TiO2更大的表面积和孔体积,且对丙烯有光催化氧化降解活性而备受关注[2]。以往在对TiO2纳米粉体和纳米膜材料在光催化研究中,人们发现由于光激发产生的电子与空穴的复合,导致光量子效率很低。为克服这个缺点,人们使用过渡金属离子掺杂等多种手段对TiO2进行改性[3]。但钛酸纳米管相类似的研究还未见报道。对钛酸纳米管的结构和组成的研究表明[4],此纳米管状物的组成是N axH2-xTi3O7,…  相似文献   

5.
TiO2 nanopowders doped by Si and Zr were prepared by sol–gel method. The effects of Si and Zr doping on the structural, optical, and photo-catalytic properties of titania nanopowders have been studied by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, and UV–Vis absorption spectroscopy. XRD results suggest that adding impurities has a significant effect on anatase phase stability, crystallinity, and particle size of TiO2. Titania rutile phase formation in ternary system (Ti–Si–Zr) was inhibited by Zr4+ and Si4+ co-doped TiO2 in high temperatures (500–900 °C) and 36 mol% anatase composition is retained even after calcination at 1,000 °C. The photocatalyst activity was evaluated by photocatalytic degradation kinetics of aqueous methylen orange under visible radiation. The results show that the photocatalytic activity of the 20 %Si and 15 %Zr co-doped TiO2 nanopowders have a larger degradation efficiency than pure TiO2 under visible light.  相似文献   

6.
The TiO2: Sb nanoscale thin films were deposited on glass substrates by the sol–gel dip-coating method. The influence of the dopant density on the structure and the phase transformation of the thin films were investigated by X-ray diffraction (XRD) and Raman spectra. From the results of XRD, the thin films were in a majority of anatase state. The results of Raman spectra indicated that the non-doped TiO2 thin film composed of not only anatase but also brookite phase. Dopant Sb enhances the transformation of the TiO2 from brookite to anatase phase. After doping proper amount of Sb, the thin films show more superhydrophilicity than the non-doped TiO2 thin film as well. The crystal size of the TiO2 : Sb is about 13.3–20 nm calculated from the XRD patterns.  相似文献   

7.
Although TiO2 is an efficient photocatalyst, its large band gap limits its photocatalytic activity only to the ultraviolet region. An experimentally synthesized ternary Fe/C/S‐doped TiO2 anatase showed improved visible light photocatalytic activity. However, a theoretical study of the underlying mechanism of the enhanced photocatalytic activity and the interaction of ternary Fe/C/S‐doped TiO2 has not yet been investigated. In this study, the defect formation energy, electronic structure and optical property of TiO2 doped with Fe, C, and S are investigated in detail using the density functional theory + U method. The calculated band gap (3.21 eV) of TiO2 anatase agree well with the experimental band gap (3.20 eV). The defect formation energy shows that the co‐ and ternary‐doped systems are thermodynamically favorable under oxygen‐rich condition. Compared to the undoped TiO2, the absorption edge of the mono‐, co‐, and ternary‐doped TiO2 is significantly enhanced in the visible light region. We have shown that ternary doping with C, S, and Fe induces a clean band structure without any impurity states. Moreover, the ternary Fe/C/S‐doped TiO2 exhibit an enhanced photocatalytic activity, a smaller band gap and negative formation energy compared to the mono‐ and co‐doped systems. Moreover, the band edges of Fe/C/S‐doped TiO2 align well with the redox potentials of water, which shows that the ternary Fe/C/S‐doped TiO2 is promising photocatalysts to split water into hydrogen and oxygen. These findings rationalize the available experimental results and can assist the design of TiO2‐based photocatalyst materials.  相似文献   

8.
During chemical vapor synthesis of TiO2 nanopowders, nitrogen atoms were doped into the crystal lattice of TiO2. The nitrogen atoms were predominantly incorporated substitutionally in the crystal lattice of TiO2 nanopowders up to the doping level of 1.25 mol% nitrogen, whereas they were in both interstitial and substitutional sites over about 1.43 mol% nitrogen. From the photocatalytic activity of nitrogen-doped TiO2 estimated by decomposition of methylene blue under visible light, it was found that the substitutional nitrogen anions appearing at the low level doping was beneficial to its photocatalytic activity, whereas the interstitial ones appearing at the high level doping over 1.25 mol% nitrogen were not. The improved photocatalytic activity due to the substitutionally doped nitrogen was attributed to band gap narrowing which was confirmed by the studies of XPS, near edge X-ray absorption fine structure, and UV–Vis absorption.  相似文献   

9.
Cobalt doped titania nanoparticles were synthesized by sol-gel method using titanium(IV) isopropoxide and cobalt nitrate as precursors. X-Ray diffraction (XRD) results showed that titania and Co/TiO2 nanoparticles only include anatase phase. The framework substitution of Co in TiO2 nanoparticles was established by XRD, scanning electron microscopy equipped with energy dispersive X-ray microanalysis (SEM-EDX) and Fourier transform infrared (FT-IR) techniques. Transmission electron microscopy (TEM) images confirmed the nanocrystalline nature of Co/TiO2. The increase of cobalt doping enhanced “red-shift” in the UV-Vis absorption spectra. The dopant suppresses the growth of TiO2 grains, agglomerates them and shifts the band absorption of TiO2 from ultraviolet (UV) to visible region. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. Although the photocatalytic activity of undoped TiO2 was found to be higher than that of Co/TiO2 under UV irradiation, the presence of 0.5% Co dopant in TiO2 resulted in a catalyst with the highest activity under visible irradiation.  相似文献   

10.
In this work, TiO2 and doped TiO2 photocatalysts (Fe/TiO2 and Cu/TiO2) were synthesized by the sol–gel method. The main objective of this study was to investigate the influence of dopants on the structure, morphology, and activity of the catalysts in powder and immobilized states. XRF, XRD, and SEM methods were used to characterize the catalysts. The structure and phase distribution of the nanocrystalline powders were identified by XRD. Nanoparticles crystallite size and the degree of crystallinity were affected by doping. The anatase contents of catalysts were achieved as follows: TiO2 (5.89 %) < Fe/TiO2 (42.17 %) < Cu/TiO2 (70.28 %). It was indicated that the activity of the catalysts strongly depends on the anatase content. Under the same circumstances, copper-modified TiO2 exhibited a twofold higher photocatalytic activity compared with TiO2. The nanostructured catalysts were immobilized on light expanded clay aggregate (LECA) granules in order to investigate the effect of a novel support on the activity of the catalysts. Morphological changes are recognizable in the SEM images. Activity tests indicated that the best catalytic performance was assigned to Cu/TiO2/LECA. After 120 min of irradiation, 61 % degradation of phenol in synthetic wastewater was achieved. The high photocatalytic activity of Cu/TiO2/LECA confirms that LECA is as an excellent support.  相似文献   

11.
采用溶剂热法合成了不同Fe掺杂含量的Fe-CeO2纳米粉体及不同氮源掺杂的N-10% Fe-CeO2nFe/(nFe+nCe)=10%)纳米粉体。利用TEM、XRD、XPS、Raman和UV-Vis等技术对其微观结构与形貌进行了表征,并通过降解亚甲基蓝溶液对其光催化性能进行了研究。结果表明,Fe掺杂可以提高CeO2的光催化性能,以10% Fe-CeO2催化效率最高,对亚甲基蓝的降解率从纯CeO2的67%提高到95%。而N的掺杂可调节10% Fe-CeO2催化性能。以浓氨水为氮源的N-10% Fe-CeO2(NH3·H2O-N-10% Fe-CeO2)的降解率可进一步提高到97%,并且具有较好的稳定性,经5次循环使用,对亚甲基蓝的光催化降解率仍高达89%。CeO2催化活性的提高主要由于掺杂Fe和N改变了CeO2的晶体结构与能带结构,促进了光生电子与空穴的产生与催化反应。  相似文献   

12.
TiO2 photocatalytic powders were synthesized by a sol–gel combustion synthesis method in which urea was used as the fuel and titanyl nitrate was used as the oxidizer. Various fuel-to-oxidizer ratios were studied for their effects on the combustion phenomena and the properties of the synthesized TiO2. The fuel-to-oxidizer ratio was found to determine the maximum combustion temperature, which in turn affects the specific surface area, crystallite size, and weight fraction of anatase phase of the synthesized TiO2. The synthesized TiO2 all contain carbonaceous species and are either pure anatase or anatase–rutile mixed phase in crystalline structure. The photocatalytic activity of the TiO2 was found to correlate to a certain degree with the specific surface area, crystallite size, weight fraction of anatase phase, and visible and IR absorbances. The mixed phase TiO2 shows a higher photocatalytic activity than the pure anatase phase TiO2 when containing a small fraction (<~25 wt%) of rutile phase but a lower phoyocatalytic activity when containing a large fraction (>~25 wt%) of rutile phase. The synthesized TiO2 all show higher photocatalytic activity than Degussa P25 TiO2. The enhanced photocatalytic activity was attributed mainly to sensitization by the carbonaceous species and larger amounts of hydroxyl group adsorbed on the TiO2 surface.  相似文献   

13.
采用溶剂热法合成了不同Fe掺杂含量的Fe-CeO_2纳米粉体及不同氮源掺杂的N-10%Fe-CeO_2(n_(Fe)/(n_(Fe)+n_(Ce))=10%)纳米粉体。利用TEM、XRD、XPS、Raman和UV-Vis等技术对其微观结构与形貌进行了表征,并通过降解亚甲基蓝溶液对其光催化性能进行了研究。结果表明,Fe掺杂可以提高CeO_2的光催化性能,以10%Fe-CeO_2催化效率最高,对亚甲基蓝的降解率从纯CeO_2的67%提高到95%。而N的掺杂可调节10%Fe-CeO_2催化性能。以浓氨水为氮源的N-10%Fe-CeO_2(NH_3·H_2O-N-10%Fe-CeO_2)的降解率可进一步提高到97%,并且具有较好的稳定性,经5次循环使用,对亚甲基蓝的光催化降解率仍高达89%。CeO_2催化活性的提高主要由于掺杂Fe和N改变了CeO_2的晶体结构与能带结构,促进了光生电子与空穴的产生与催化反应。  相似文献   

14.
Fe–TiO2–SiC composite with photocatalytic activity has been synthesized by a low cost sonochemical process in the presence of citric acid. The addition of citric acid during the sonochemical process allows the formation of a photocatalytic coating of Fe–TiO2 onto silicon carbide. Experimental characterization results indicate that the composite was formed over all the surface of the silicon carbide (SiC) with an anatase crystalline TiO2 phase with iron incorporation. The incorporation of iron narrows the band gap of TiO2 which allow the absorbtion of light with a large wavelength. The obtained Fe–TiO2–SiC composite exhibits good enhanced photocatalytic activity for the degradation of rhodamine B under solar simulator irradiation in comparison with the commercial TiO2–P25.  相似文献   

15.
Nanocrystalline mesoporous TiO2 was synthesized by hydrothermal method using titanium butoxide as starting material. XRD, SEM, and TEM analyses revealed that the synthesized TiO2 had anatase structure with crystalline size of about 8 nm. Moreover, the synthesized titania possessed a narrow pore size distribution with average pore diameter and high specific surface area of 215 m2/g. The photocatalytic activity of synthesized TiO2 was evaluated with photocatalytic H2 production from water-splitting reaction. The photocatalytic activity of synthesized TiO2 treated with appropriate calcination temperature was considerably higher than that of commercial TiO2 (Ishihara ST-01). The utilization of mesoporous TiO2 photocatalyst with high crystallinity of anatase phase promoted great H2 production. Furthermore, the reaction temperature significantly influences the water-splitting reaction.  相似文献   

16.
Mn–N-codoped TiO2 nanocrystal photocatalysts responsive to visible light were synthesized for the first time by a simple hydrothermal synthesis method. X-ray powder diffraction (XRD) measurement indicated that all the photocatalysts have an anatase crystallite structure, and that increase of the doping concentration had little effect on the structure and particle size. Compared to N-doped TiO2, a shift of the absorption edge of Mn–N-codoped TiO2 to a lower energy and a stronger absorption in the visible light region were observed. The Mn–N-codoped TiO2 showed higher photocatalytic reactivity than undoped TiO2 or N-doped TiO2 for the photodegradation of rhodamine B (RhB) under visible light irradiation. The highest photocatalytic activity was achieved on 0.4 mol% Mn–N–TiO2 calcined at 673 K.  相似文献   

17.
Crystalline anatase phase TiO2 with photocatalytic properties was obtained through a sol–gel low-temperature hydrothermal process. TiO2 samples doped with tungsten oxide were also obtained by using this synthetic approach. The photocatalytic oxidation of methylene blue in water was monitored to study the influence of the tungsten doping degree on the photocatalytic degradation performance of TiO2. The degradation rate constant was further increased by adjusting the tungsten doping degree of hydrothermal TiO2. Also, a much faster photodegradation of methylene blue was achieved using tungsten doped samples baked at 450°C. The results were compared with those obtained with Degussa P25 used as photocatalyst. The structure and optical properties of tungsten-doped TiO2 were studied by SEM, X-ray diffraction, UV–vis and DRIFT spectroscopy techniques.  相似文献   

18.
本文以廉价无机盐Na2SiO3·9H2O和TiCl4溶液为原料,采用化学包覆结合超临界流体干燥(SCFD)法制备纳米级TiO2-SiO2复合光催化剂。利用XRD、TEM、NMR等手段对复合粉体进行了表征。结果表明,采用超临界流体干燥法可直接制得锐钛矿型TiO2-SiO2纳米复合光催化剂,其中SiO2以单分散、无定形形式存在。以苯酚和邻苯二酚紫光催化降解为反应模型,考察了TiO2-SiO2复合光催化剂的催化性能。证明掺入适量SiO2的TiO2-SiO2纳米复合光催化剂既减少了TiO2的用量、降低了成本,又在某种程度上提高了TiO2的光催化活性。SiO2的引入可以有效抑制纳米粒子粒径的长大和晶相的转变,增强了二氧化钛纳米粒子的热稳定性。二氧化硅的最优掺杂量为15%(质量分数)。  相似文献   

19.
By a hydrothermal method, iron and nitrogen co-doped TiO2 and iron oxide impregnated nitrogen-doped TiO2 were prepared. The obtained Fe and N co-doped TiO2 showed mixed anatase, rutile, and brookite phases, and high specific surface areas above 160 m2/g. The Fe co-doping was proved to be effective to enhance the visible light absorption ability; however, the photocatalytic activity in deNO x experiment decreased due to the increase in the amount of lattice vacancy. On the other hand, the photocatalytic activity of N-doped TiO2 was improved by the impregnation of iron oxide.  相似文献   

20.
Two‐dimensional anatase TiO2 hollow nanoplates were firstly synthesized through a facile synthesis route by using α‐Fe2O3 nanoplates as removable templates. Two‐dimensional hollow TiO2 nanoplates with different ratios of anatase and rutile phases were obtained by adjusting the calcining temperature. The average diameters were around 600 nm, and the shell thickness was approximately 30 nm. The photocatalytic performance of TiO2 was investigated by decomposing rhodamine B under simulated sunlight. Among the TiO2 samples, the anatase TiO2 hollow nanoplates manifested a significant enhancement in the photocatalytic performances. The excellent catalytic performance can be attributed to the unique structure of the two‐dimensional anatase TiO2 hollow nanoplates, including a large surface area and increased dye–photocatalyst contact areas as well as more active sites for photodegradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号