共查询到20条相似文献,搜索用时 15 毫秒
1.
The RCo2Mn (R=Ho and Er) alloys, crystallizing in the cubic MgCu2-type structure, are isostructural to RCo2 compounds. The excess Mn occupies both the R and the Co atomic positions. Magnetic, electrical and heat capacity measurements have been done in these compounds. The Curie temperature is found to be 248 and 222 K for HoCo2Mn and ErCo2Mn, respectively, which is considerably higher than that of the corresponding RCo2 compounds. Saturation magnetization values in these samples are less compared to that of the respective RCo2 compounds. 相似文献
2.
Arjun K. Pathak Igor DubenkoShane Stadler Naushad Ali 《Journal of magnetism and magnetic materials》2011,323(20):2436-2440
The magnetic, magnetocaloric, and magnetotransport properties of RCo1.8Mn0.2 (R=Er, Ho, Dy, and Tb) were studied by room temperature X-ray diffraction, magnetization, and resistivity measurements at a temperature interval of 5-400 K and magnetic fields up to 5 T. The Curie temperature of RCo2 was found to increase significantly when 10% Mn was substituted for Co. The effective paramagnetic moments were found to be in reasonable agreement with their theoretical values. A large magnetoresistance (MR) of Δρ/ρo≈−13.5% for R=Ho at T≈153 K for ΔH=5 T has been observed. The maximum relative cooling capacities vary from 467 J/kg at low temperature for R=Er to 202 J/kg at the near room temperature for R=Tb. 相似文献
3.
The electronic structure and magnetic properties of B-based Heusler alloys Fe2YB (Y=Ti, V, Cr and Mn) have been studied theoretically. These alloys are all ferrimagnets except for Fe2VB. The latter has 24 valence electrons and is a paramagnetic semimetal. Fe2CrB is predicted to be half-metals at equilibrium lattice constant. The spin polarization of Fe2MnB is also quite high. The calculated total moments are 1.00 μB for Fe2CrB and 2.04 μB for Fe2MnB. In Fe2CrB and Fe2MnB, the total moments are mainly determined by the partial moment of Cr or Mn. The Fe moment is relatively small and antiparallel to that of Cr or Mn. Under uniform lattice distortion, the half-metallicity of Fe2CrB is more stable than Fe2MnB, which is related to the detailed DOS structure of them near EF. 相似文献
4.
As promising light-absorber material for solar cells, Cu2ZnSnS4 was found to have another crystal structure (wurtzite-kesterite) in addition to the conventional zinc blende-kesterite structure. Structural flexibility of Cu2ZnSnS4 opens up an avenue to develop light-absorber material with novel exciting properties and applications. However, its electronic and optical properties have not been comprehensively studied yet. For this purpose, the method of density functional theory within hybrid functional of PBE0 was adopted to study the structural, electronic, and optical properties of wurtzite-kesterite Cu2ZnSnS4 in this Letter. The calculated results suggested that the energy of its band gap is about 1.372 eV and it has obvious optical anisotropy. Furthermore, its crystal structure leads local internal fields that are especially beneficial to suppress the recombination of photoexcited electron–hole pairs. 相似文献
5.
Yi Ding Yanli Wang Jun NiLin Shi Siqi ShiWeihua Tang 《Physica B: Condensed Matter》2011,406(11):2254-2260
Using first principles calculations, we investigate the structural, vibrational and electronic structures of the monolayer graphene-like transition-metal dichalcogenide (MX2) sheets. We find the lattice parameters and stabilities of the MX2 sheets are mainly determined by the chalcogen atoms, while the electronic properties depend on the metal atoms. The NbS2 and TaS2 sheets have comparable energetic stabilities to the synthesized MoS2 and WS2 ones. The molybdenum and tungsten dichalcogenide (MoX2 and WX2) sheets have similar lattice parameters, vibrational modes, and electronic structures. These analogies also exist between the niobium and tantalum dichalcogenide (NbX2 and TaX2) sheets. However, the NbX2 and TaX2 sheets are metals, while the MoX2 and WX2 ones are semiconductors with direct-band gaps. When the Nb and Ta atoms are doped into the MoS2 and WS2 sheets, a semiconductor-to-metal transition occurs. Comparing to the bulk compounds, these monolayer sheets have similar structural parameters and properties, but their vibrational and electronic properties are varied and have special characteristics. Our results suggest that the graphene-like MX2 sheets have potential applications in nano-electronics and nano-devices. 相似文献
6.
T. Ben Nasr H. Maghraoui-MeherziH. Ben Abdallah R. Bennaceur 《Physica B: Condensed Matter》2011,406(2):287-292
The electronic and optical properties of Sb2S3 are studied using the full potential linearized augmented plane wave (FP-LAPW) method as implemented in Wien2k. In this approach, the alternative form of the generalized gradient approximation (GGA) proposed by Engel and Vosko (EV-GGA) was used for the exchange correlation potential. The calculated band structure shows a direct band gap. The contribution of different bands was analyzed from total and partial density of states curves. Moreover, the optical properties, including the dielectric function, absorption spectrum, refractive index, extinction coefficient, reflectivity and energy-loss spectrum are all obtained and analyzed in detail. 相似文献
7.
K. Wojciechowski J. Tobola R. Zybala 《Journal of Physics and Chemistry of Solids》2008,69(11):2748-2755
Undoped and p- and n-doped AgSbX2 (X=Se and Te) materials were synthesized by direct fusion technique. The structural properties were investigated by X-ray diffraction and SEM microscopy. The electrical conductivity, thermal conductivity and Seebeck coefficient have been measured as a function of temperature in the range from 300 to 600 K.To enlighten electron transport behaviours observed in AgSbSe2 and AgSbTe2 compounds, electronic structure calculations have been performed by the Korringa-Kohn-Rostoker method as well as KKR with coherent potential approximation (KKR-CPA) for ordered (hypothetical AgX and SbX as well as AgSbX2 approximates) and disordered systems (Ag1−xSbxX), respectively. The calculated density of states in the considered structural cases shows apparent tendencies to opening the energy gap near the Fermi level for the stoichiometric AgSbX2 compositions, but a small overlap between valence and conduction bands is still present. Such electronic structure behaviour well agrees with the semimetallic properties of the analyzed samples. 相似文献
8.
Cihan Parlak 《Physica B: Condensed Matter》2012,407(13):2622-2625
We report a detailed ab initio study of the structural, electronic, and volume dependent elastic and lattice dynamical properties of Sr(Ni0.5Si0.5)2. The calculations have been carried out within the local density functional approximation using norm-conserving pseudopotentials and a plane-wave basis. The phonon dispersion curves along the high-symmetry directions and phonon frequencies with their Grüneisen parameters at the Brillouin zone center are computed by using density functional perturbation theory while the elastic constants are calculated in metric-tensor formulation. The band structure, and partial densities of states and Fermi surface topology are also discussed. 相似文献
9.
B. Ghebouli M.A. Ghebouli T. Chihi M. Fatmi S. Boucetta M. Reffas 《Solid State Communications》2009,149(47-48):2244-2249
We present structural, elastic, electronic and optical properties of the perovskites SrMO3 (M=Ti, and Sn) for different pressure. The computational method is based on the pseudo-potential plane wave method (PP-PW). The exchange-correlation energy is described in the generalized gradient approximation (GGA). The calculated equilibrium lattice parameters are in reasonable agreement with the available experimental data. This work shows that the perovskites SrTiO3, and SrSnO3 are mechanically stable and present an indirect band gaps at the Fermi level. Applied pressure does not change the shape of the total valence electronic charge density and most of the electronic charge density is shifted toward O atom. Furthermore, in order to understand the optical properties of SrMO3, the dielectric function, absorption coefficient, optical reflectivity, refractive index, extinction coefficient and electron energy-loss are calculated for radiation up to 80 eV. The enhancement of pressure decreases the dielectric function and refractive indices of SrTiO3 and SrSnO3. 相似文献
10.
P. Guzdek J. Pszczo?aJ. Chmist P. Stoch 《Journal of magnetism and magnetic materials》2011,323(5):427-431
Synthesis by arc melting, the structural and the electric properties of Y(Co1−xNix)2 alloys were studied by X-ray diffraction (XRD) and four probe dc electrical measurements. XRD analysis (300 K) shows that all samples crystallize in a cubic MgCu2-type structure. The lattice parameters linearly decrease with Ni content. Electrical resistivity for the Y(Co1−xNix)2 intermetallic series was measured in a temperature range of 15-1100 K. The parameters involved in the dependence of resistivity on temperature were determined. Residual, phonon and spin fluctuations resistivity were separated from electrical resistivity using both the Matthiesen formula and the Bloch-Gruneisen formula. The spin fluctuations resistivity of the Y(Co1−xNix)2 series are compared to the mean square amplitudes of spin fluctuations previously calculated by the Linear Muffin Tin Orbital-Tight Binding Approach method for these series in the literature. The contribution of spin fluctuations to total resistivity ρsf is proportional to T2 at low temperatures. The proportionality parameter strongly reduces across the Y(Co1−xNix)2 series. 相似文献
11.
Bin Xu Xingfu LiZhen Qin Congguo LongDapeng Yang Jinfeng SunLin Yi 《Physica B: Condensed Matter》2011,406(4):946-951
Electronic structure and optical properties of CuGaS2 are calculated using the full potential linearized augmented plane wave plus local orbitals method. The calculated equilibrium lattice is in reasonable agreement with the experimental data. The electronic structures indicate that CuGaS2 is a semiconductor with a direct bandgap of 0.81802 eV. Furthermore, other experiments and theory also show that this material has a direct bandgap. It is noted that there is quite strong hybridization between Ga 3d and S 3s orbitals, which belongs to the (GaS2)−. The complex dielectric functions are calculated, which are in good agreement with the available experimental results. 相似文献
12.
X.K. Lv F. Yang J. Li Z.D. Zhang 《Journal of magnetism and magnetic materials》2010,322(20):3173-3177
The structure, magnetic and magnetostrictive properties of Sm0.88Nd0.12(Fe1−xCox)1.93 (0≤x≤1.0) alloys have been investigated. The alloys have the cubic MgCu2 structure over the whole composition range and the lattice parameter a decreases with increasing x. For 0≤x≤0.2, substitution of Co for Fe slightly increases the saturation magnetization Ms and Curie temperature Tc, while further substitution causes a decrease in both Ms and Tc. The spin reorientation is observed, and a phase diagram for the spin configurations of the Sm0.88Nd0.12(Fe1−xCox)1.93 system is determined. The spontaneous magnetostriction λ111 increases as x is increased, while a monotonic decrease of the saturation magnetostriction λs with x originates from the increase of λ100 with opposite sign to that of λ111, which may be caused by the filling of the d band due to Co substitution. 相似文献
13.
Co4Sb12−xTex compounds were prepared by mechanical alloying combined with cold isostatic pressing, and the effects of Te doping on the thermoelectric properties were studied. The electronic structure of Te-doped and undoped CoSb3 compounds has been calculated using the first-principles plane-wave pseudo-potential based on density functional theory. The experimental and calculated results show that the value of the solution limit x of Te in Co4Sb12−xTex compounds is between 0.5 and 0.7. The Fermi surface of CoSb3 is located between the conduction band and the valence band, and its electrical resistivity decreases with increasing temperature. The density of states is mainly composed of Co 3d and Sb 5p electrons for intrinsic CoSb3.The Fermi surface of Te-doped compounds moves to the conduction band and its electrical resistivity increases with increasing temperature, exhibiting n-type degenerated semiconductor character. Under the conditions of the experiment, the maximum value 2.67 mW/m K2 of the power factor for Co4Sb11.7Te0.3 is obtained at 600 K; this is about 14 times higher than that of CoSb3. 相似文献
14.
Structural, elastic and electronic properties of transition metal carbides TMC (TM=Ti, Zr, Hf and Ta) from first-principles calculations 总被引:2,自引:0,他引:2
Hui Li Litong Zhang Qingfeng Zeng Kang Guan Kaiyuan Li Haitao Ren Shanhua Liu Laifei Cheng 《Solid State Communications》2011,151(8):602-606
The structural, elastic and electronic properties of TiC, ZrC, HfC and TaC have been investigated by first-principles calculations using the plane-wave pseudopotential method. Different exchange-correlation functionals regarding the local density approximation and the PBE, RPBE and PW91 forms of generalized gradient approximation are taken into account. The NaCl-type cubic structures of TMC (TM=Ti, Zr, Hf and Ta) are optimized and confirmed to be mechanically stable. The elastic properties such as the elastic constants, bulk modulus, shear modulus, Young’s modulus and Poisson’s ratio of TMC are investigated, and the performances of LDA and GGA are discussed. The electronic density of state, electron charge density and Mulliken population analysis have been explored to discuss the electronic properties and bonding behaviors of TMC. The present calculation results compare satisfactorily with the experimental data and previous theoretical calculations. 相似文献
15.
16.
B. W. Wang Z. D. Zhang S. L. Tang X. M. Jin X. G. Zhao 《Journal of magnetism and magnetic materials》1997,170(3)
Structure, Curie temperature and magnetostriction of RFex (1.6 x 2.0) and R(Fe1−yTiy)1.8 (y 0.2) alloys (R=Dy0.65Tb0.25Pr0.1) have been investigated using optical microscopy, X-ray diffraction, AC initial susceptibility and standard strain gauge techniques. The homogenized RFex alloys are found to be essentially single phase in the range of 1.8 x 1.85. The second phase is a rare-earth-rich phase when x 1.8, and (Dy, Tb, Pr)Fe3 phase when x 1.85. X-ray diffraction indicates that the R(Fe1−yTiy)1.8 alloys contain a small amount of Fe2Ti phase when y 0.05, which increases with the increment of Ti content. The Curie temperature of R(Fe1−yTiy)1.8 alloys slightly enhances with increasing Ti concentration when y 0.05, then remains almost unchanged in the range of 0.05 y 0.20. The magnetostriction of RFex alloys is improved when x 1.80 and reduced by increasing Fe content when x 1.85. The magnetostriction of R(Fe1−yTiy)1.8 alloys is lowered by increasing Ti content. 相似文献
17.
Electronic structures, elastic properties and thermal stabilities of Mg17Al12, Mg2Si and Al2Y have been determined from first-principle calculations. The calculated heats of formation and cohesive energies show that Al2Y has the strongest alloying ability and structural stability. The brittle behavior and structural stability mechanism is also explained through the electronic structures of these intermetallic compounds. The elastic constants are calculated, the bulk moduli, shear moduli, Young's moduli and Poisson ratio value are derived, the brittleness and plasticity of these phases are discussed. Gibbs free energy, Debye temperature and heat capacity are calculated and discussed. 相似文献
18.
Salman Mehmood M. Nasir Rasul Muhammad Amir Rafiq Rohail Ali Shah Muhammad Azhar Khan Faisal Iqbal Altaf Hussain 《Chinese Journal of Physics (Taipei)》2018,56(1):30-39
The structural, electronic and optical properties of the ternary carbides Hf2Al3C4 and Hf3Al3C5 are studied via first principles orthogonalized linear combination of atomic orbitals (OLCAO) method. Results on crystal structure, interatomic bonding, band structure, total and partial density of states (DOS), localization index (LI), effective charge (Q*), bond order (BO), dielectric function (ε), optical conductivity (σ) and electron energy loss function are presented and discussed in detail. The band structure plots show the conducting nature of Hf2Al3C4 and Hf3Al3C5 carbides. DOS results disclose that the total number of states at Fermi level N(EF) are 1.89 and 2.38 states/(eV unit cell) for Hf2Al3C4 and Hf3Al3C5 respectively. The Q* calculations show an average charge transfer of 0.723 and 0.711 electrons from Hf and 0.809 and 0.807 electrons from Al to C sites in Hf2Al3C4 and Hf3Al3C5 respectively. The BO results provide the dominating role of Al–C bonds with BO value of 6.62 (BO%?=?59%) and 6.66 (BO%?=?49%) for Hf2Al3C4 and Hf3Al3C5 respectively and are considered responsible for the crystals cohesion. The LI results reflect the presence of highly delocalized states in the vicinity of the Fermi level. The dielectric function plots of the real (?1(?ω)) and imaginary (?2(?ω)) parts show the anisotropic behavior of Hf2Al3C4 and Hf3Al3C5. The results on optical conductivity (σ) support the trends observed in dielectric functions. The electron energy loss functions reveal the presence of sharp peaks both in ab-plane and along c-axis around 20?eV in Hf2Al3C4 and Hf3Al3C5 ternary carbides. 相似文献
19.
Structural parameters as well as elastic, electronic, bonding and optical properties of monoclinic ZrO2 were investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The calculated structural properties and independent elastic constants of monoclinic ZrO2 are in favorable agreement with previous work. We have derived the bulk and shear moduli, Young’s modulus and Poisson coefficients for monoclinic ZrO2 and estimated the Debye temperature of monoclinic ZrO2 from acoustic velocity. Electronic and bonding properties are studied from the calculation of band structure, densities of states and charge densities. Furthermore, in order to clarify the mechanism of optical transitions in monoclinic ZrO2, the dielectric functions are calculated and analyzed by means of the electronic structure, which shows significant optical anisotropy in the components of polarization directions (1 0 0), (0 1 0) and (0 0 1). 相似文献
20.
M2AlC phases, where M is a transition metal, are layered ternary compounds that possess unusual properties. In this paper, we have calculated the elastic properties of M2AlC, with M=Ti, V, Cr, Nb and Ta, by means of ab initio total energy calculations using the projector augmented-wave method. We have derived the bulk and shear moduli, Young's moduli and Poisson's ratio for ideal polycrystalline M2AlC aggregates. We have estimated the elastic modulus of Cr2AlC with 357.7 GPa while the values of all other phases are in the range 309±10 GPa. We suggest that this can be understood based on the calculated bond energies for the M-C bonds. Furthermore, our results indicate a profound elastic anisotropy of M2AlC even compared to materials with a well-established anisotropic character such as α-alumina. Finally, we have estimated the Debye temperatures of M2AlC from the average sound velocity. 相似文献