首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose a scheme to fast prepare the three-qubit W state via superadiabatic-based shortcuts in a circuit quantumelectrodynamics (circuit QED) system. We derive the effective Hamiltonian to suppress the unwanted transitions betweendifferent eigenstates by counterdiabatic driving, and obtain the W state with high-fidelity based on the superadiabaticpassage. The numerical simulation results demonstrate that the proposed scheme can accelerate the evolution, and is moreefficient than that with the adiabatic passage. In addition, the proposed scheme is robust to the decoherence caused by theresonator decay and qubit relaxation, and does not need additional parameters, which could be feasible in experiment.  相似文献   

2.
A scheme to manipulate quantum correlation between output lights of a cavity‐atom system by phase control is proposed. A driving‐field phase is introduced which has a similar value with that of building up quantum correlation in a Hanbury–Brown–Twiss setup. A closed‐loop phase is formed to improve quantum coherence by phase‐dependent electromagnetically induced transparency. The closed‐loop phase has been utilized to realize quantum correlation and even quantum entanglement in the atomic system of previous work. With these two phases, a steady and maximum quantum correlation has been obtained in the scheme here. Moreover, the maximum quantum correlation is free to decoherence of this cavity‐atom system. The study on field‐intensity correlation (quantum correlation) has potential applications on correlated imaging, image encryption transmission, and the improvement of noise resistance in a quantum network.  相似文献   

3.
We study the dynamics of multipartite entanglement under decoherence induced by the environment consisting of a fermionic bath. Based on the algebraic measure of entanglement-negativity, we analyze the time evolution of entanglement of both pure states and mixed ones, and find that entanglement evolution depends on both bath temperature and the number of qubits of the system. A linear space SLDF which is dynamically decoupled from the environment is identified in the sense of linear entropy to symbolize the environment effect.  相似文献   

4.
邵晓强  张寿 《中国物理快报》2008,25(9):3132-3134
We propose a scheme for one-step generation of cluster states with atoms sent through a thermal cavity with strong classical driving field, based on the resonant atom-cavity interaction so that the operating time is sharply short, which is important in the view of decoherence.  相似文献   

5.
简并多光子过程中两能级原子消相干性的消除   总被引:6,自引:1,他引:5  
张登玉 《光子学报》2002,31(5):537-540
研究置于外部环境(热库)中的两能级原子消相干性的消除.在相互作用系统中通过外加驱动场的方法,得到简并多光子过程中两能级原子约化密度算符非对角元.当外加驱动场的演化规律满足一定的条件时,可使两能级原子的消相干被消除.  相似文献   

6.
Decoherence of quantum objects in noisy environments is important in quantum sciences and technologies. It is generally believed that different processes coupled to the same noise source have similar decoherence behaviors and stronger noises cause faster decoherence. Here we show that in a quantum bath, the case can be the opposite. We predict that the multitransition of a nitrogen-vacancy center spin-1 in diamond can have longer coherence time than the single transitions, even though the former suffers twice stronger noises from the nuclear spin bath than the latter. This anomalous decoherence effect is due to manipulation of the bath evolution via flips of the center spin.  相似文献   

7.
钱懿  许晶波 《中国物理 B》2012,21(3):30305-030305
We investigate a two-level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of the atom and cavity field as the time turns to infinity. We also find that the stationary quantum discord can be increased by applying a classical driving field. Furthermore, we explore the quantum discord dynamics of two identical non-interacting two-level atoms independently interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence. Results show that the quantum discord between two atoms is more robust than entanglement under phase decoherence and the classical driving field can help to improve the amount of quantum discord of the two atoms.  相似文献   

8.
We investigate a two-level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of the atom and cavity field as the time turns to infinity.We also find that the stationary quantum discord can be increased by applying a classical driving field.Furthermore,we explore the quantum discord dynamics of two identical non-interacting two-level atoms independently interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence.Results show that the quantum discord between two atoms is more robust than entanglement under phase decoherence and the classical driving field can help to improve the amount of quantum discord of the two atoms.  相似文献   

9.
基于腔量子电动力学(QED)提出一种利用两对纠缠的级联型三能级原子与单模腔场系统制备原子-原子最大纠缠态的简单方案,最初两原子之间、两腔场之间互不纠缠,使其中一个原子与一个腔场发生作用,即纠缠交换,该过程仅需对单个腔场态测量就可实现从未有直接作用的两个原子之间的纠缠,精确控制原子与腔场的相互作用时间可获得具有最大保真度的纠缠态.该方案可以延长腔的有效泄漏时间,从而能有效克服光腔的消相干的影响,这样大大降低了系统对腔的品质的要求.  相似文献   

10.
We propose and analyze an efficient high-dimensional quantum state transfer protocol in an XX coupling spin network with a hypercube structure or chain structure. Under free spin wave approximation, unitary evolution results in a perfect high-dimensional quantum swap operation requiring neither external manipulation nor weak coupling. Evolution time is independent of either distance between registers or dimensions of sent states, which can improve the computational efficiency. In the low temperature regime and thermodynamic limit, the decoherence caused by a noisy environment is studied with a model of an antiferromagnetic spin bath coupled to quantum channels via an Ising-type interaction. It is found that while the decoherence reduces the fidelity of state transfer, increasing intra-channel coupling can strongly suppress such an effect. These observations demonstrate the robustness of the proposed scheme.  相似文献   

11.
This paper investigates the entanglement dynamics of a Heisenberg XY model for a two-spin system in the presence of a nonuniform magnetic field.The master equations and the concurrence evolution equations for the initial α state are derived and analysed.It is shown that for the symmetric initial α state,only the nonuniform field can play a role in entanglement dynamics while the uniform field and the bath will not play such a role.For the asymmetric α state,the nonuniform field leads to the beat pattern oscillation of the concurrence evolution.The inhomogeneity of the field can enhance the entanglement by suppressing the decoherence effects of both the spin-orbit interaction and the spin bath.  相似文献   

12.
We propose a scheme to achieve nuclear-nuclear indirect interactions mediated by a mechanically driven nitrogen-vacancy (NV) center in a diamond. Here we demonstrate two-qubit entangling gates and quantum-state transfer between two carbon nuclei. When the dipole-dipole interaction strength is much larger than the driving field strength, the scheme is robust against decoherence caused by coupling between the NV center (nuclear spins) and the environment. Conveniently, precise control of dipole coupling is not required so this scheme is insensitive to fluctuating positions of the nuclear spins and the NV center. Our scheme provides a general blueprint for multi-nuclear-spin gates and for multi-party communication.  相似文献   

13.
14.
本文研究了双轴分子磁体在耗散环境中的相干量子隧穿,作为环境的声子库抑制了相干量子隧穿,从而引起分子磁体中薛定谔猫态的退相干. 而环境内部声子之间的相互作用会导致分子磁体与热库之间退耦合,于是对退相干有一定的抑制作用. 在绝热近似和非绝热近似下,借助于约化密度矩阵计算了超Ohmo耗散中分子磁体与环境之间的纠缠度,当纠缠达到最大时,相干隧穿被完全抑制.  相似文献   

15.
We present a general and fascinating problem of quantum entanglement (QE) that is calculated with the help of quantum Fisher information (QFI) and von Neumann entropy (VNE) for moving two-level atomic systems. We calculate numerically the temporal evolution of the state vector of the entire system under the influence of intrinsic decoherence for a moving two-level atom. We demonstrate that the phase shifts of an estimator parameter, intrinsic decoherence, and the atomic motion play an important and prominent role during the time evolution of the atomic system. We observe that there is a monotonic relation between the atomic quantum Fisher information (QFI) and quantum entanglement (QE) in the absence of atomic motion. We also show that at the revival time the local maximum values of QFI decreases gradually. A periodic behavior of QFI is observed in the presence of atomic motion, which becomes more important and remarkable for two-level atomic systems. Moreover, the atomic quantum Fisher information and entanglement demonstrate an opposite response during the time evolution in the presence of atomic motion. We show that the evolution of entanglement is more susceptible to the intrinsic decoherence; a considerable change occurs in the degree of entanglement when the intrinsic decoherence parameter increases. Intrinsic decoherence in the atom–field interaction represses the nonclassical effects of the atomic systems. Both the entanglement and the quantum Fisher information saturate to their lower levels for longer time scales in the presence of intrinsic decoherence. For larger values of intrinsic decoherence, the sudden death of entanglement is observed.  相似文献   

16.
应用全量子理论研究了存在相位退相干时单模相干光场与一个二能级原子相互作用系统纠缠的时间演化规律;分别讨论了原子—光场耦合常数、光场的平均光子数以及失谐量的大小对场与原子纠缠的影响.结果表明:随着原子—光场耦合常数的增大和光场平均光子数的增加,系统纠缠的振荡频率都会明显增大.不存在相位退相干时,纠缠的时间演化明显受到失谐量的影响,若选取适当的失谐量,系统的纠缠可长时间保持在最大纠缠态.若考虑相位退相干的影响,则在共振情况下系统纠缠的时间演化是一个逐渐衰减的过程,且最终衰减到零;但若存在适当的失谐量,则在初始一段时间内系统的纠缠也是一个波动幅度逐渐衰减的过程,但随着时间的演化,失谐量抵消了相位退相干的影响,使系统的纠缠不再衰减到零.如果增大失谐量,纠缠在初始一段时间内波动的幅度会相应的减小,并且纠缠趋于稳定的时间也随着失谐量的增大而缩短;当失谐量适当时,系统可保持在纠缠相对较大的状态而无消纠缠态.  相似文献   

17.
Generation of cluster states in thermal cavity   总被引:1,自引:0,他引:1  
A scheme is reported for generating a multi-atom cluster state in thermal cavities, which is based on the simultaneous interaction of two two-level atoms with a single-mode cavity field driven by a classical field. The photon-number-dependent parts in the evolution operator are cancelled with the assistant of a strong classical field, so the scheme is insensitive to the thermal field. In the present scheme, the detuning between the atoms and the cavity is equal to the atom-cavity coupling strength, thus the operation speed is greatly improved, which is important in view of decoherence.  相似文献   

18.
Dynamical control of decoherence induced by the environment in a single quantum-bit system is investigated. We choose the suitable perturbations acting on the qubit system to decrease the decoherence due to pure amplitude damping. The scheme proposed here is based on the free-Hamiltonian-elimination technique and the paritykick technique, which concludes two homogeneous classical large-blue-detuned optical fields with different frequencies added to the qubit system. By applying this scheme, the decoherence can be completely suppressed.  相似文献   

19.
Dynamical control of decoherence induced by the environment in a single quantum-bit system is investigated. We choose the suitable perturbations acting on the qubit system to decrease the decoherence due to pure amplitude damping. The scheme proposed here is based on the free-Hamiltonian-elimination technique and the paritykick technique, which concludes two homogeneous classical large-blue-detuned optical fields with different frequencies added to the qubit system. By applying this scheme, the decoherence can be completely suppressed.  相似文献   

20.
In this paper, we propose a scheme to protect quantum state by utilizing the time‐dependent decoherence‐free subspaces (TDFSs) theory without the rotating‐wave approximation (RWA). A coherent control is designed to drive the quantum system into the TDFSs, moreover, the singularities of the designed coherent control can be avoided by appropriately choosing the control parameters. From an experimental view point, the influences of variations of the control parameters and the imperfect initial state are discussed in detail. Numerical simulations confirm that the scheme can protect the quantum information from both the environmental decoherence and the control errors. In addition, by comparing with the scheme employing RWA, we show that the weak coherent control field is not suitable to create the TDFS, the counter‐rotating terms in the strong coherent control are helpful to protect the quantum information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号