首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The growth modes and interaction of vapor-deposited Cu on a clean Pt(111) surface have been monitored by Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and work function measurements. The LEED data indicate that below 475 K Cu grows in p(1 × 1) islands in the first monolayer with the interatomic Cu spacing the same as the Pt(111) substrate. The second monolayer of Cu grows in epitaxial, rotationally commensurate Cu(111) planes with the CuCu distance the same as bulk Cu. For substrate temperatures below ~ 475 K, the variation of work function and “cross-over beam voltage” with Cu coverage show characteristic features at one monolayer that are quite useful for calibration of θCu. Above 525 K, Cu-Pt alloy formation was observed in AES and LEED data. Thermal desorption spectroscopy of H2 and CO has demonstrated that simple site blocking of the Pt(111) surface by vapor-deposited Cu occurs linearly with chemisorption being essentially eliminated at θCu = 1.0–1.15. Conclusions drawn from this work correlate very favorably with the well-known effects of under potentially deposited copper on the electrochemistry of the H22H+ couple at platinum electrodes.  相似文献   

2.
The process of copper deposition on a structured Cu(111)-(9 × 9)-Ag surface, which represents a (9 × 9) loop dislocation network, is studied by scanning tunneling microscopy. It is found that, when the substrate temperature is 100 K and the copper coverage is 0.1–0.4 of a monolayer, islands of a size no greater than 50 Å are formed at the Ag/Cu(111) interface. The islands remain stable as the sample is heated to room temperature. The shape and boundaries of the nanoislands follow the initial surface superstructure and are determined by the nonuniformity of the interaction of the upper silver layer with the copper substrate. The mechanism of island formation and the origin of their stability are explained in terms of the atom exchange between the adsorbate and substrate.  相似文献   

3.
Linear CoCu(n)Co clusters on Cu(111) fabricated by atomic manipulation represent a two-site Kondo system with tunable interaction. Scanning tunneling spectroscopy reveals oscillations of the Kondo temperature T(K) with the number n of Cu atoms for n≥3. Density functional calculations show that the Ruderman-Kittel-Kasuya-Yosida interaction mediated by the Cu chains causes the oscillations. Calculations find ferromagnetic and antiferromagnetic interaction for n=1 and 2, respectively. Both interactions lead to a decrease of T(K) as experimentally observed.  相似文献   

4.
The interaction of methane, propane, ethene and propene with clean and oxidised Cu(111) has been studied in the temperature range 300–750 K and at pressures up to 0.1 Pa with ellipsometry, AES and LEED. Methane and propane showed no measurable interaction under our conditions. Propene exposure on Cu(111) at T > 475 K resulted in a slow carbon deposition of the graphitic type. Propene was able to remove all oxygen from Cu(111)/O at T 625 K. The fastest part of the reduction has a first order dependence on the propene pressure; the apparent activation energy is 44.9 ± 5.2 kJ mol−1. Though ethene is less reactive than propene it is also able to reduce an oxidised copper surface at T = 725 K.  相似文献   

5.
Investigations on adsorption behavior of triphenylene(TP) and subsequent graphene self-assembly on Cu(111) were carried out mainly by using scanning tunneling microscopy(STM).At monolayer coverage,TP molecules formed a longrange ordered adsorption structure on Cu(111) with an uniform orientation.Graphene self-assembly on the Cu(111) substrate with TP molecules as precursor was achieved by annealing the sample,and a large-scale graphene overlayer was successfully captured after the sample annealing up to 1000 K.Three different Moire patterns generated from relative rotational disorders between the graphene overlayer and the Cu(111) substrate were observed,one with 40 rotation between the graphene overlayer and the Cu(111) substrate with a periodicity of 2.93 nm,another with 70 rotation and 2.15 nm of the size of the Moire supercell,and the third with 100 rotation with a periodicity of 1.35 nm.  相似文献   

6.
The Kondo resonance of Co adatoms on the Cu(100) and Cu(111) surfaces has been studied by scanning tunneling spectroscopy. We demonstrate the scaling of the Kondo temperature T(K) with the host electron density at the magnetic impurity. The quantitative analysis of the tunneling spectra reveals that the Kondo resonance is dominated by the Cu bulk electrons. While at the Cu(100) surface both tunneling into the hybridized localized state and into the substrate conduction band contribute to the Kondo resonance, the latter channel is found to be dominant for Cu(111).  相似文献   

7.
A quantitative study of the long-range interaction between single copper adatoms on Cu(111) mediated by the electrons in the two-dimensional surface-state band is presented. The interaction potential was determined by evaluating the distance distribution of two adatoms from a series of scanning tunneling microscopy images taken at temperatures of 9-21 K. The long-range interaction is oscillatory with a period of half the Fermi wavelength and decays for larger distances d as 1/d(2). Five potential minima were identified for separations of up to 70 A. The interaction significantly changes the growth of Cu/Cu(111) at low temperatures.  相似文献   

8.
The controlled formation of non-covalent bonds (H-bonding, metal–ligand interactions) is the key ingredient for the fabrication of supramolecular architectures and nanostructures. Upon deposition of molecular building blocks at well-defined surfaces, this issue can be directly addressed. Scanning tunneling microscopy observations are presented, which provide insight into the interaction of functional groups on metal substrates at the molecular level. In particular, carboxylic acids were employed: (4-[(pyrid-4-yl-ethynyl)]-benzoic acid (PEBA), 4-[trans-2-(pyrid-4-yl-vinyl)]-benzoic acid (PVBA) and trimesic acid (1,3,5-benzenetricarboxylic acid, TMA), which could be stabilized in a flat geometry at the surface. By choosing the appropriate substrate material and symmetry, the sensitive balance of intermolecular and molecule–substrate interactions can be tuned to obtain well-defined supramolecular architectures and nanostructures. The head-to-tail hydrogen bonding of the related rod-like species PEBA and PVBA stabilizes molecular rows on Ag(111). The subtle difference in the molecular geometries is reflected in the lateral ordering: While 2-D islanding is encountered with PEBA, 1-D nanogratings of supramolecular chiral H-bonded twin chains evolve for PVBA. The threefold symmetry of TMA in conjunction with the self-complementarity of its exodentate groups accounts for the formation of H-bonded honeycomb networks on Cu(100) at low temperatures. Metal–ligand interactions were probed with PVBA and TMA at Cu surfaces at ambient temperature. Deprotonation of the carboxyl moiety takes place, which readily interacts with Cu adatoms evaporated from step edges. This leads to a head-to-head pairing of PVBA on Cu(111) and cloverleaf-shaped Cu–TMA coordination compounds on Cu(001). Received: 4 June 2002 / Accepted: 2 October 2002 / Published online: 5 February 2003 RID="*" ID="*"Corresponding author. Fax: +41-21/693-3604, E-mail: johannes.barth@epfl.ch  相似文献   

9.
We provide a new definition of the interfacial energy which eliminates three physically extraneous contributions from the conventional definition: (1) the strain or stress energy due to lattice mismatch between film and substrate; (2) the surface energy of the film-vacuum interface; and, (3) the substrate surface energy contribution from substrate layers below the film layers. This new interface energy then quantifies the variation in interactions among film/substrate, film/film and substrate/substrate bonding. Using this new definition, we derive the equations for evaluation of the interfacial energy in terms of the interaction energy for any atom in each layer of the film/substrate, film/film and substrate/substrate systems. With this formulation, it is simple to determine the dependence of the interfacial energy on the film thickness using virtually any interaction potential. Using a corrected effective medium theory, we present results for a few pseudomorphic film systems containing Ni/Cu, Ni/Ag, Cu/Ag and Rh/Ag on (111) and (100) surfaces. These systems cover a wide range of lattice mismatch and alloy formation energies. The results demonstrate that the new definition of interfacial energy converges after only 3–4 film layers, regardless of the degree of lattice mismatch. We also show that the interfacial energies at (100) and (111) interfaces differ and that the interfacial energy for a given pair of materials depends on which of the materials is the film.  相似文献   

10.
It has been known that a good quality h-BN layer can only be grown within a narrow temperature window of 1020–1100 K on a copper substrate. We found that the growth temperature window on Cu(111) surface could be lowered up to 100 K by ionizing and/or exciting borazine precursor gas with an electron-beam. The structures of a hexagonal boron nitride (h-BN) layers grown at various substrate temperatures on a Cu(111) were examined using scanning tunneling microscopy. We found that the grown h-BN film exhibits highly inert behavior with wide bandgap semiconductor characteristics.  相似文献   

11.
F. Solymosi  J. Kiss 《Surface science》1981,104(1):181-198
No detectable adsorbed species were observed after exposure of HNCO to a clean Cu(111) surface at 300 K. The presence of adsorbed oxygen, however, exerted a dramatic influence on the adsorptive properties of this surface and caused the dissociative adsorption of HNCO with concomitant release of water. The adsorption of HNCO at 300 K produced two new strong losses at 10.4 and 13.5 eV in electron energy loss spectra, which were not observed during the adsorption of either CO or atomic N. These loses can be attributed to surface NCO on Cu(111). The surface isocyanate was stable up to 400 K. The decomposition in the adsorbed phase began with the evolution of CO2. The desorption of nitrogen started at 700 K. Above 800 K, the formation of C2N2 was observed. The characteristics of the CO2 formation and the ratios of the products sensitively depended on the amount of preadsorbed oxygen. No HNCO was desorbed as such, and neither NCO nor (NCO)2 were detected during the desorption. From the comparison of adsorption and desorption behaviours of HNCO, N, CO and CO2 on copper surfaces it was concluded that NCO exists as such on a Cu(111) surface at 300 K. The interaction of HNCO with oxygen covered Cu(111) surface and the reactions of surface NCO with adsorbed oxygen are discussed in detail.  相似文献   

12.
The dissociative chemisorption of molecular bromine on Cu(111) at 300 K has been studied using ultraviolet photoelectron spectroscopy (UPS), Auger electron spectroscopy (AES), low energy electron diffraction (LEED) and work function change measurements. A (√3 × √3)R30° structure is formed initially at a bromine coverage of 0.33 ML. This then converts to a (9√3 × 9√3)R30° compression structure with a coverage of 0.41 ML. The coincidence distance of the compression structure is determined entirely by the van der Waals diameter of adsorbed bromine. The applicability of using the van der Waals diameters of the three halogens, Cl, Br and I, to predict the saturation compression structures on Cu(111), is discussed.  相似文献   

13.
The soft deposition of Ni13 and Cu13 clusters on Ni(111) and Cu(111) surfaces is studied by means of constant-energy molecular-dynamics simulations. The atomic interactions are described by the Embedded Atom Method. It is shown that the shape of the nickel clusters deposited on Cu(111) surfaces remains rather intact, while the copper clusters impacting on Ni(111) surfaces collapse forming double and triple layered products. Furthermore, it is found that for an impact energy of 0.5 eV/atom the structures of all investigated clusters show the lowest similarity to the original structures, except for the case of nickel clusters deposited on a Cu(111) surface. Finally, it is demonstrated that when cluster and substrate are of different materials, it is possible to control whether the deposition results in largely intact clusters on the substrate or in a spreading of the clusters. This separation into hard and soft clusters can be related to the relative cohesive energy of the crystalline materials.  相似文献   

14.
Thin films of the metal organic molecule bis(4-cyano-2,2,6,6-tetramethyl-3,5-heptanedionato)copper(II) (or Cu(CNdpm)2), (C24H36N2O4Cu, Cu(II)), deposited on ferromagnetic Co(111) at 40 K, exhibit a finite electron spin polarization. The spin polarization magnitude and sign for Cu(CNdpm)2 deposited on Co(111) is coverage dependent, but deviates from the mean field expectations for a simple paramagnet on a ferromagnetic substrate. The spin asymmetry is seen to favor select molecular orbitals, consistent with the predicted single molecule density of states. The overlayer polarization observed indicates a strong influence of the ferromagnetic Co(111) substrate and some extra-molecular magnetic coupling.  相似文献   

15.
We report experimental results on an insulator-on-metal system which is inherently unstable against lateral pattern formation on the nanometer scale. NaCl deposition on Cu(211) at substrate temperatures >300 K leads to faceting into (311) and (111) facets and selective NaCl growth on (311) facets only, thereby creating alternating stripes of bare Cu and NaCl-covered areas. The mesoscopic restructuring process is brought about by (1) the tendency to form (100)-terminated NaCl layers, (2) epitaxial matching between NaCl(100) and Cu(311), and (3) sufficient mobility of the Cu substrate surface.  相似文献   

16.
LEED studies of xenon monolayers at 77K on (111), (100) and (110) faces of copper and (111), (110) and (211) faces of silver show that the xenon atoms are hexagonally close-packed (or nearly so) on each surface, and that the surface area per adatom is about 17Å2. The adsorbate layer is epitaxially related to the substrate but is in full registry only on Cu (111). Surface potential values are consistent with those already reported for annealed polycrystalline films of copper and silver indicating that the latter are not specifically related to surface roughness.  相似文献   

17.
本文利用分子动力学模拟方法对相同初始沉积条件下的单个Cu原子和Cu13团簇与Fe(001)表面的相互作用分别进行了模拟研究, 并将两者的模拟结果进行了比较分析. 单个Cu原子和Cu13团簇的初始入射能量范围均为1eV/atom、3eV/atom、5eV/atom和10eV/atom, 初始入射角度均为0o、10o、30o和45o, 衬底温度分别为100K、300K和800K. 对单个Cu原子和Cu13团簇的原子动能、质心高度、迁移距离和最终沉积形貌进行了分析, 对比研究了相同初始沉积条件下单个Cu原子和Cu13团簇在沉积过程中和沉积效果上的具体差异. 模拟结果表明: 单个Cu原子和Cu13团簇与Fe(001)表面的相互作用机制存在差异, Cu13团簇表现出显著的集体效应. 在特定沉积条件下, 由于Cu13团簇的集体效应, 导致Cu13团簇与Fe(001)表面的结合能力和在Fe(001)表面上的扩散能力均强于单个Cu原子.  相似文献   

18.
半金属铋(Bi)的表面合金具有的Rashba效应,和其具体结构性质有重要关联.本文结合扫描隧道显微镜(STM)和密度泛函理论(DFT),系统地研究了Bi原子在Ag(111)和Au(111)上的不同初始生长行为.在室温Ag(111)上,连续的Ag2Bi合金薄膜会优先在Ag台阶边缘形成;在570 K Ag(111)上,随着...  相似文献   

19.
The interactions of methyl and methylene radicals on Cu(111) were investigated with XPS, AES and HREELS under various exposure conditions. The CH2 and CH3 radicals are generated through a hot nozzle source with ketene and azomethane gases. It is shown that with substrate at 300 K, the impinging CH3 radicals are trapped mainly as CH3(ads), while a part of the adsorbate decomposes to form CH2(ads) and H(ads). H atoms are found to desorb at about 380 K, while the chemisorbed hydrocarbon adspecies desorb at about 420 K. In drastic contrast, exposing the clean Cu surface to methylene radicals results not only in the trapping of CH2(ads), but also in the formation of complex aromatic species. The adlayer is sensitive to annealing at elevated temperatures. Desorption and partial conversion to methylidyne take place at around 420 K. The CH(ads) species can survive up to 700 K and then decomposes to form residual carbon above 800 K. In both radical-Cu(111) systems, surface coverage appears to saturate near one monolayer. The relative concentrations of different surface species in the adlayer, however, depend on the amount of radical exposure. The reaction properties of the two systems are compared and discussed.  相似文献   

20.
Morphologies of Cu(111) films on Si(111)-7×7 surfaces prepared at lowtemperature are investigated by scanning tunnelling microscopy (STM) andreflection high-energy electron diffraction (RHEED). At the initial growth stage, Cu films are flat due to the formation of silicide at the interface that decreases the mismatch between Cu films and the Si substrate. Different from the usual multilayer growth of Cu/Cu(111), on the silicide layer a layer-by-layer growth is observed. The two dimensional (2D) growth is explained by the enhanced high island density at low deposition temperature. Increasing deposition rateproduces films with different morphologies, which is the result of Ostwald ripening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号