首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physics letters. A》1986,117(3):115-119
The optimal configurations of all atoms in atomic microclusters of an inert element have been obtained from their arbitrary positions and shapes by means of a Lennard-Jones interaction potential between atoms in the clusters, calculating the binding energies of the clusters with the numbers of atoms N ⩽ 14, which have shown the magic numbers of geometry in accordance with the experimental results. The structural pictures of such clusters are also presented.  相似文献   

2.
The energy of actinide nuclei has been determined within a generalized liquid drop model taking into account the proximity energy, the mass and charge asymmetry, an accurate nuclear radius in adding the shell and pairing energies. Double and triple-humped potential barriers appear. The second maximum corresponds to the transition from compact and creviced one-body shapes to two touching ellipsoids. A third minimum and third peak appear in special asymmetric exit channels where one fragment is almost a magic nucleus with a quasi-spherical shape while the other one evolves from oblate to prolate shapes. The heights of the double and triple-humped fission barriers agree precisely with the experimental results in all the actinide region. The predicted half-lives follow the experimental data trend.  相似文献   

3.
We calculate correlation energies associated with the quadrupole shape degrees of freedom with a view to improving the self-consistent mean-field theory of nuclear binding energies. Systematic results are presented for 605 even-even nuclei from mass number 16 to the heaviest whose mass has been measured, using the Skyrme SLy4 interaction and the generator coordinate method. Correlation energies range from 0.5 to 6.0 MeV, and their inclusion improves two qualitative deficiencies of the mean-field theory, namely, the exaggerated shell effect at neutron magic numbers and the failure of mean-field theory to describe mutually enhanced magicity. For the mass table as a whole, the quadrupolar correlations improve binding energies, separation energies, and separation energy differences by 20%30%.  相似文献   

4.
Amethod for determining parameters of a dispersive optical potential is presented. This method is aimed at calculating single-particle energies of neutron and proton states of magic and near-magic nuclei. It is based on the use of global parameters of the imaginary part of the traditional-optical-model potential and experimental data on single-particle energies in the vicinity of the Fermi surface that were determined by simultaneously evaluating data on nucleon-stripping and nucleon-pickup reactions on the same nucleus. The potential of the method for describing and predicting single-particle energies of 40 ⩽ A ⩽ 132 magic and near-magic nuclei is demonstrated.  相似文献   

5.
Nucleons with very small binding energies present in nuclei far from the β stability line produce a unique shell structure, which leads to the disappearance of traditional magic numbers or to the creation of new magic numbers and new deformation regions. We study the shell structure in terms of the variation of two important ingredients, the kinetic energy and the spin-orbit splitting, as a function of the orbital angular momentum ℓ, when binding energies of neutrons decrease towards zero. It is also shown that for low-lying threshold strength, a negative sign is possible for the polarization charge coming from the coupling of one-particle to isoscalar shape oscillations. Received: 1 May 2001 / Accepted: 4 December 2001  相似文献   

6.
The mass surface of nuclei close to the doubly magic nuclide 78Ni is calculated by two methods. The first relies on the multiparticle shell model based on an effective interaction and a mean nuclear potential. The second employs the concept of so-called “magic crosses” and enables us to determine the masses of odd-odd nuclei close to 78Ni by using similarity of the shell structure and neutron-proton interaction in the region of nuclei under consideration and in the region of heavy magic nuclides. The energies of the separation of one and two neutrons from nuclei close to 78Ni and the energies of the β decay of these nuclei—recall that these quantities of astrophysical interest—are presented.  相似文献   

7.
Surface-supported planar clusters can sprout active research and create numerous applications in the realm of nanotechnology. Exploitation of these clusters will be more extended if their properties on a supported substrate are thoroughly apprehended, and if they can be fabricated in a controllable way. Here we report finding the magic numbers in two-dimensional Ag clusters grown on Pb quantum islands. We demonstrate, with the images and energy spectra of atomic precision, the transition from electronic origin to a geometric one within the same system. Applying the magic nature, we can also produce a large array of planar clusters with well-defined sizes and shapes.  相似文献   

8.
原子核的第一激发态能级是所有激发态能级中最重要的一条能级,在一定程度上可直接反映该核素的稳定性。通过对2 125个核素的第一激发态能级纲图进行统计分析,发现传统幻数位置的第一激发能明显高于邻近核素的第一激发能,亦对应于同位素链、同中子素链上原子核第一激发能最大的核素。对于第一激发能较大且明显偏离传统幻数位置的少量核素,发现都具有同质异位素相似态或为裂变核的混合能级,这些给出的值是否是第一激发态,在理论和实验上仍存在一定的不确定性;而对于原子核第一激发能最大的核素,其自旋宇称为2+的最多(高达42%)。对于中重核区内的偶偶核,其第一激发能与价核子NpNn关系明显趋于指数的衰减形式。  相似文献   

9.
The evaluated single-particle energies of neutron states were obtained for doubly magic neutronrich nucleus 78Ni. The evaluations were made by extrapolation of the experimental energies of stable nickel isotopes based on the mass regularities in the results of theoretical calculations of the energies, in particular, using the Koura-Yamada potential. The evaluated energies were analyzed by the mean-field model with dispersive optical potential; a good agreement between the calculated and evaluated energies was achieved.  相似文献   

10.
基于中子分离能的分析 ,Ozawa等提出丰中子轻核存在新幻数 N=1 6.对 N=1 6同中子素进行了形变和球形的相对论平均场计算 .相对论平均场的数值结果表明N=1 6同中子素有形状相变.这是一些丰中子核新幻数出现的可能原因. Based on the analysis of neutron-separation energies, Ozawa et al proposed a new magic number N =16 in light neutron-rich nuclei. The deformed and spherical relativistic mean-field(RMF) calculations have been carried out for N =16 isotones. The numerical relativistic mean-field results show there is a shape transition in N =16 isotones. This is the possible cause of the appearance of the new magic number in someneutron-rich nuclei.  相似文献   

11.
We have surveyed the neutron separation energies (S(n)) and the interaction cross sections (sigma(I)) for the neutron-rich p-sd and the sd shell region. Very recently, both measurements reached up to the neutron drip line, or close to the drip line, for nuclei of Z/=3), which shows the creation of a new magic number. A neutron-number dependence of sigma(I) shows a large increase of sigma(I) for N = 15, which supports the new magic number. The origin of the new magic number is also discussed.  相似文献   

12.
Extreme nuclear shapes are considered from the clustering point of view. General aspects of light nuclei which possess very exotic, elongated shapes (“α-strings”) are given. The relation between superdeformation and di-molecules is considered, and it is shown that nuclear di-molecules have the same magic numbers and orbits filled as the ellipsoidal superdeformations for light nuclei, while for heavier nuclei they are expected in different mass-regions. The structure of possible octupole-unstable 3∶1 nuclear shapes (“hyperdeformations”) is discussed. Indications and consequences of a four-fold symmetry of the nuclear hamiltonian are briefly discussed.  相似文献   

13.
在Skyrme-Hartree-Fock-Bogoliubov(SHFB)理论框架下,利用SkOP1,SkOP2,SKC和SKD 4套新的Skyrme相互作用参数系统地研究了Ca,Ni,Sn和Pb同位素链上原子核的结合能、电荷半径等基态性质,并重点讨论了丰中子Ca核的新中子幻数以及Pb的同位素位移现象。通过与实验数据和SLy5相互作用参数的结果对比,发现这4套相互作用参数都能很好地再现结合能的实验数据,其预言精度比SLy5要高。对于丰中子Ca核,只有SKC和SKD相互作用参数能够再现N=28处的壳效应,而对于实验上发现的新幻数N=32和34,所有的相互作用参数均不能再现这一结果。对于电荷半径,发现所有的相互作用参数均不能很好地预言Ca同位素链电荷半径的演化规律以及Pb的同位素位移现象。另外,还将这些相互作用参数推广至远离β稳定线原子核的单粒子能级结构研究,发现其不适用于描述其随同位旋的演化行为。因此,为了更好地描述远离β稳定线原子核的宏观性质及单粒子能级,建议在拟合Skyrme相互作用参数时,除自旋-轨道耦合项包括合理的同位旋依赖外,还要考虑张量力成分。The nuclear ground state properties of Ca, Ni, Sn and Pb isotopes, such as the binding energies, the charge radii, are studied systematically by 4 sets of new Skyrme parametrizations SKC, SKD, SkOP1 and SkOP2 in the framework of the Skyrme-Hartree-Fock-Bogoliubov (SHFB) method. The new magic numbers of neutronrich Ca isotopes and the isotopic shift of Pb isotopes are discussed emphatically. By the comparisons between the calculations and the experimental data and results from the SLy5 interaction parametrization, it is found that the experimental binding energies can be reproduced accurately by all parametrizations. The calculated accuracies of SKC, SKD SkOP1 and SkOP2 parametrizations are higher than the ones of SLy5 parametrization. For the neutron-rich Ca nuclei, the shell effect of N=28 can be reproduced by the SKC and SKD parametrizations, but the magic numbers at N=32 and 34 are not found by the calculations of all the parametrizations. For the charge radii, the experimental evolution tendency of Ca isotopes and isotopic shift of Pb isotopes can not be reproduced by all the parametrizations. In addition, all Skyrme parametrizations are extended to study the structure of the nuclei far from the β stability line, it is shown that the single-particle energy evolutions with the isospin are not suitable for being studied by these parametrizations. Thus the tensor force component should be considered besides the isospin dependence in spin-orbit coupling term when the Skyrme interaction parametrizations are fitted.  相似文献   

14.
The ground-state properties of Sn, Te, Xe, and Ba isotopes have been systematically investigated in the framework of the deformed relativistic mean-field theory with the new parameter set FSUGold. The results show that FSUGold is as successful as NL3 * in reproducing the ground-state binding energies of the nuclei. The calculated two-neutron separation energies, quadrupole deformations, and root-mean-square (rms) charge radii are in good agreement with the experimental data. The parameter set FSUGold can successfully describe the shell effect of the neutron magic number N = 82 . Detailed discussions on the binding energies, two-neutron separation energies, quadrupole deformations, rms charge radii and “binding energies” of the last neutrons are given.  相似文献   

15.
A numerical comparison of the dipolar recoupling performance of several previously published homonuclear recoupling schemes under magic angle-spinning conditions is presented. Emphasis is put on the recoupled polarization transfer in a two-spin system where the efficiency is studied as a function of resonance offsets in the presence and absence of chemical-shielding anisotropies. In addition, the effect of the rf field strength is investigated. Powder pattern line shapes are shown in the on-resonance case that reveal the distribution of dipolar couplings for each recoupling scheme. These results are compared to data computed with a purposely misset rf field strength to estimate the pulse scheme sensitivity to rf-inhomogeneity and experimental missettings.  相似文献   

16.
The shell evolution at N = 20, a disappearing neutron magic number observed experimentally in very neutron-rich nuclides, is investigated in the constrained relativistic mean field (RMF) theory. The trend of the shell closure observed experimentally towards the neutron drip-line can be reproduced. The predicted two-neutron separation energies, neutron shell gap energies and deformation parameters of ground states are shown as well. These results are compared with the recent Hartree-Fock-Bogliubov (HFB-14) model and the available experimental data. The perspective towards a better understanding of the shell evolution is discussed.  相似文献   

17.
孙保华  李剑 《中国物理 C》2008,32(11):882-885
The shell evolution at N=20, a disappearing neutron magic number observed experimentally in very neutron-rich nuclides, is investigated in the constrained relativistic mean field (RMF) theory. The trend of the shell closure observed experimentally towards the neutron drip-line can be reproduced. The predicted two-neutron separation energies, neutron shell gap energies and deformation parameters of ground states are shown as well. These results are compared with the recent Hartree-Fock-Bogliubov (HFB-14) model and the available experimental data. The perspective towards a better understanding of the shell evolution is discussed.  相似文献   

18.
张高龙  乐小云 《中国物理 B》2009,18(9):3810-3814
The α preformation factor and penetration probability have been analyzed for even--even nuclei of Po, Rn, Ra using experimental released energies and α decay half-lives in the frame of the double folding model. It is shown that N=126 is a neutron magic number from α preformation and shell effects play an important role in α preformation. The closer the nucleon number is to the magic number, the more difficult α formation in the parent nucleus is. The preformation factor can supply information on the nuclear structure and the penetration probability mainly determines α decay half-life.  相似文献   

19.
《Nuclear Physics A》1999,651(3):237-249
We test the importance of non-axial nuclear shapes in spontaneous fission of heavy and superheavy even-even nuclei from the region around a hypothetical doubly magic nucleus 298114. Fission half-lives are calculated by finding dynamical fission paths as dictated by the least WKB action principle with the macroscopic-microscopic energy and the cranking inertial parameters. Results show that the effects of non-axial shapes on the fission process are weakened by the inertia tensor and become important only for the heaviest elements with Z ⩾ 120.  相似文献   

20.
In this work we present ab initio calculations of the formation energies and stability of different types of multi-vacancies in carbon nanotubes. We demonstrate that, as in the case of graphene, the reconstruction of the defects has drastic effects on the energetics of the tubes. In particular, the formation of pentagons eliminates the dangling bonds thus lowering the formation energy. This competition leads to vacancies having an even number of carbon atoms removed to be more stable. Finally the appearance of magic numbers indicating more stable defects can be represented by a model for the formation energies that is based on the number of dangling bonds of the unreconstructed system, the pentagons and the relaxation of the final form of the defect formed after the relaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号