首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatially continuous networks with heterogeneous connections are ubiquitous in biological systems, in particular neural systems. To understand the mutual effects of locally homogeneous and globally heterogeneous connectivity, we investigate the stability of the steady state activity of a neural field as a function of its connectivity. The variation of the connectivity is implemented through manipulation of a heterogeneous two-point connection embedded into the otherwise homogeneous connectivity matrix and by variation of the connectivity strength and transmission speed. Detailed examples including the Ginzburg–Landau equation and various other local architectures are discussed. Our analysis shows that developmental changes such as the myelination of the cortical large-scale fiber system generally result in the stabilization of steady state activity independent of the local connectivity. Non-oscillatory instabilities are shown to be independent of any influences of time delay.  相似文献   

2.
We study a network of coupled logistic maps whose interactions occur with a certain distribution of delay times. The local dynamics is chaotic in the absence of coupling and thus the network is a paradigm of a complex system. There are two regimes of synchronization, depending on the distribution of delays: when the delays are sufficiently heterogeneous the network synchronizes on a steady-state (that is unstable for the uncoupled maps); when the delays are homogeneous, it synchronizes in a time-dependent state (that is either periodic or chaotic). Using two global indicators we quantify the synchronizability on the two regimes, focusing on the roles of the network connectivity and the topology. The connectivity is measured in terms of the average number of links per node, and we consider various topologies (scale-free, small-world, star, and nearest-neighbor with and without a central hub). With weak connectivity and weak coupling strength, the network displays an irregular oscillatory dynamics that is largely independent of the topology and of the delay distribution. With heterogeneous delays, we find a threshold connectivity level below which the network does not synchronize, regardless of the network size. This minimum average number of neighbors seems to be independent of the delay distribution. We also analyze the effect of self-feedback loops and find that they have an impact on the synchronizability of small networks with large coupling strengths. The influence of feedback, enhancing or degrading synchronization, depends on the topology and on the distribution of delays.  相似文献   

3.
We review our recent work on the synchronization of a network of delay-coupled maps, focusing on the interplay of the network topology and the delay times that take into account the finite velocity of propagation of interactions. We assume that the elements of the network are identical (N logistic maps in the regime where the individual maps, without coupling, evolve in a chaotic orbit) and that the coupling strengths are uniform throughout the network. We show that if the delay times are sufficiently heterogeneous, for adequate coupling strength the network synchronizes in a spatially homogeneous steady state, which is unstable for the individual maps without coupling. This synchronization behavior is referred to as ‘suppression of chaos by random delays’ and is in contrast with the synchronization when all the interaction delay times are homogeneous, because with homogeneous delays the network synchronizes in a state where the elements display in-phase time-periodic or chaotic oscillations. We analyze the influence of the network topology considering four different types of networks: two regular (a ring-type and a ring-type with a central node) and two random (free-scale Barabasi-Albert and small-world Newman-Watts). We find that when the delay times are sufficiently heterogeneous the synchronization behavior is largely independent of the network topology but depends on the network’s connectivity, i.e., on the average number of neighbors per node.   相似文献   

4.
5.
The static and dynamical properties of cavity solitons in a vertical cavity surface emitting laser with optical injection are investigated. Analytical results about the instabilities affecting the homogeneous steady state are presented. These instabilities play a key role in the determination of the necessary and favorable conditions for cavity soliton existence. Optimization of an all-optical delay line by tuning the injected field frequency leads to a five fold increase of the soliton velocity in the transverse plane. Finally, the phenomenon of cavity soliton merging is applied to combine input signals in optical information processing and to manipulate two dimensional optical memories.  相似文献   

6.
A set of NMR laser equations is presented for a spin-1 model under the assumption that the system is homogeneously broadened and spatially independent. The steady state solutions are obtained and their instabilities are revealed. The results are compared with the spin-1/2 model. Multi-codimensional bifurcation points are found.  相似文献   

7.
We study spatial instabilities in reacting and diffusing systems, where diffusion is modeled by a persistent random walk instead of the usual Brownian motion. Perturbations in these reaction walk systems propagate with finite speed, whereas in reaction-diffusion systems localized disturbances affect every part instantly, albeit with heavy damping. We present evolution equations for reaction random walks whose kinetics do not depend on the particles' direction of motion. The homogeneous steady state of such systems can undergo two types of transport-driven instabilities. One type of bifurcation gives rise to stationary spatial patterns and corresponds to the Turing instability in reaction-diffusion systems. The other type occurs in the ballistic regime and leads to oscillatory spatial patterns; it has no analog in reaction-diffusion systems. The conditions for these bifurcations are derived and applied to two model systems. We also analyze the stability properties of one-variable systems and find that small wavelength perturbations decay in an oscillatory manner.  相似文献   

8.
托卡马克高约束模运行可大幅提高磁约束核聚变等离子体约束品质,该模式下的等离子体不稳定性研究对于控制约束和保护装置有重要意义。本文主要介绍了高约束模及其边缘等离子体不稳定性的研究概况,并重点介绍了中国环流器二号A托卡马克装置上关于高约束模转换、边缘局域模特征和控制方法、台基区不稳定性和台基饱和机制等方面的研究进展。研究结果表明,实验上有望通过粒子和射频波注入等外部激励的方法,影响台基区等离子体湍流,进行控制台基动力学演化以及ELM,实现既保持高约束又降低高热负荷的等离子体稳态运行。  相似文献   

9.
Tong Zhao  John D. Weeks   《Surface science》2005,580(1-3):107-121
We study current-induced step bunching and wandering instabilities with subsequent pattern formations on vicinal surfaces. A novel two-region diffusion model is developed, where we assume that there are different diffusion rates on terraces and in a small region around a step, generally arising from local differences in surface reconstruction. We determine the steady state solutions for a uniform train of straight steps, from which step bunching and in-phase wandering instabilities are deduced. The physically suggestive parameters of the two-region model are then mapped to the effective parameters in the usual sharp step models. Interestingly, a negative kinetic coefficient results when the diffusion in the step region is faster than on terraces. A consistent physical picture of current-induced instabilities on Si(1 1 1) is suggested based on the results of linear stability analysis. In this picture the step wandering instability is driven by step edge diffusion and is not of the Mullins–Sekerka type. Step bunching and wandering patterns at longer times are determined numerically by solving a set of coupled equations relating the velocity of a step to local properties of the step and its neighbors. We use a geometric representation of the step to derive a nonlinear evolution equation describing step wandering, which can explain experimental results where the peaks of the wandering steps align with the direction of the driving field.  相似文献   

10.
We study the steady state resulting from instabilities in crystals driven through a dissipative medium, for instance, a colloidal crystal which is steadily sedimenting through a viscous fluid. The problem involves two coupled fields, the density and the tilt; the latter describes the orientation of the mass tensor with respect to the driving field. We map the problem to a one-dimensional lattice model with two coupled species of spins evolving through conserved dynamics. In the steady state of this model each of the two species shows macroscopic phase separation. This phase separation is robust and survives at all temperatures or noise levels- hence the term strong phase separation. This sort of phase separation can be understood in terms of barriers to remixing which grow with system size and result in a logarithmically slow approach to the steady state. In a particular symmetric limit, it is shown that the condition of detailed balance holds with a Hamiltonian which has infinite-ranged interactions, even though the initial model has only local dynamics. The long-ranged character of the interactions is responsible for phase separation, and for the fact that it persists at all temperatures. Possible experimental tests of the phenomenon are discussed.  相似文献   

11.
By making use of perturbation techniques, we develop a theory of the non-linear steady state. We find that the linear term of a mechanical equation such as the Langevin equation is not responsible for the nonlinear terms of its expectation values at the nonequilibrium state arbitrarily far from the thermal equilibrium. The nonlinear steady state is formulated in the two cases where the microscopic conservation law exists and where it does not exist. The expressions for the expectation values of the physical quantities at the steady state are obtained as the functions of other physical quantities which are regarded as the parameters of the steady state. The stability and the instability of the steady state are discussed. A difference in the character of the instability of the steady state from that of the stationary state is discussed. It is noted that the first expansion coefficient should not exhibit an anomaly for instabilities of the steady state. The relation between the mechanical forces appearing in our approach and the corresponding thermal forces is discussed. The variational principle which is valid for the open system is developed.  相似文献   

12.
Synaptic, dendritic and single-cell kinetics generate significant time delays that shape the dynamics of large networks of spiking neurons. Previous work has shown that such effective delays can be taken into account with a rate model through the addition of an explicit, fixed delay (Roxin et al. (2005,2006) [29] and [30]). Here we extend this work to account for arbitrary symmetric patterns of synaptic connectivity and generic nonlinear transfer functions. Specifically, we conduct a weakly nonlinear analysis of the dynamical states arising via primary instabilities of the asynchronous state. In this way we determine analytically how the nature and stability of these states depend on the choice of transfer function and connectivity. We arrive at two general observations of physiological relevance that could not be explained in previous work. These are: 1 — fast oscillations are always supercritical for realistic transfer functions and 2 — traveling waves are preferred over standing waves given plausible patterns of local connectivity. We finally demonstrate that these results show good agreement with those obtained performing numerical simulations of a network of Hodgkin-Huxley neurons.  相似文献   

13.
14.
Hydrodynamic equations for nearly smooth granular gases are derived from the pertinent Boltzmann equation. The angular velocity distribution field needs to be included in the set of hydrodynamic fields. The angular velocity distribution is strongly non-Maxwellian for the homogeneous cooling state and any homogeneous steady state. In the case of steady wall-bounded shear flows the average spin (created at the boundaries) has a finite penetration length into the bulk.  相似文献   

15.
Alfvén instabilities can reduce the central magnetic shear via redistribution of energetic ions. They can sustain a steady state internal transport barrier as demonstrated in this DIII-D tokamak experiment. Improvement in burning plasma performance based on this mechanism is discussed.  相似文献   

16.
We introduce the generalized rumor spreading model and investigate some properties of this model on different complex social networks. Despite pervious rumor models that both the spreader-spreader (SS) and the spreader-stifler (SR) interactions have the same rate α, we define α(1) and α(2) for SS and SR interactions, respectively. The effect of variation of α(1) and α(2) on the final density of stiflers is investigated. Furthermore, the influence of the topological structure of the network in rumor spreading is studied by analyzing the behavior of several global parameters such as reliability and efficiency. Our results show that while networks with homogeneous connectivity patterns reach a higher reliability, scale-free topologies need a less time to reach a steady state with respect the rumor.  相似文献   

17.
A bifurcation sequence from a periodic to a quasiperiodic regime leading ultimately to a steady state, is reported in an experimental study of the Belousov-Zhabotinsky reaction. This sequence is understood in the frame of the interaction of two instabilities, namely a “hysteresis” and a Hopf bifurcation.  相似文献   

18.
The atomic-scale details during melting of a surface-free Lennard-Jones crystal were monitored using molecular dynamics simulations. Melting occurs when the superheated crystal spontaneously generates a sufficiently large number of spatially correlated destabilized particles that simultaneously satisfy the Lindemann and Born instability criteria. The accumulation and coalescence of these internal local lattice instabilities constitute the primary mechanism for homogeneous melt nucleation inside the crystal, in lieu of surface nucleation for equilibrium melting. The vibrational and elastic lattice instability criteria as well as the homogeneous nucleation theory all coincide in determining the superheating limit.  相似文献   

19.
We investigate the dynamics of an array of chaotic logistic maps coupled with random delay times. We report that for adequate coupling strength the array is able to synchronize, in spite of the random delays. Specifically, we find that the synchronized state is a homogeneous steady state, where the chaotic dynamics of the individual maps is suppressed. This synchronization behavior is largely independent of the connection topology and depends mainly on the average number of links per node. We carry out a statistical linear stability analysis that confirms the numerical results and provides a better understanding of the nontrivial roles of random delayed interactions.  相似文献   

20.
A suspension of bacteria in a thin channel or film subject to a gradient in the concentration of a chemoattractant, will develop, in the absence of an imposed fluid flow, a steady bacteria concentration field that depends exponentially on cross-stream position. Above a critical bacteria concentration, this quiescent base state is unstable to a steady convective motion driven by the active stresses induced by the bacteria's swimming. Unlike previously identified long-wavelength instabilities of active fluids, this instability results from coupling of the bacteria concentration field with the disturbance flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号