首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The generation, and stability of nanobubbles are of particular interest for fundamental research and have potential application in numerous fields. Several attempts were made in the literature to produce nanobubbles through acoustic cavitation. However, the generation and stability mechanisms of nanobubbles in the acoustic field are unclear. Here, we review the effect of ultrasound parameters on bulk nanobubbles and surface nanobubbles. On this basis, we discuss the proposed generation and stability mechanisms of nanobubbles from the perspective of transient and stable acoustic cavitation. Moreover, we propose some future research directions for a deeper understanding of the role of ultrasound in the generation and stability of nanobubbles.  相似文献   

2.
Nanoscale gas bubbles residing on a macroscale hydrophobic surface have a surprising long lifetime (on the order of days) and can serve as cavitation nuclei for initiating inertial cavitation (IC). Whether interfacial nanobubbles (NBs) reside on the infinite surface of a hydrophobic nanoparticle (NP) and could serve as cavitation nuclei is unknown, but this would be very meaningful for the development of sonosensitive NPs. To address this problem, we investigated the IC activity of polytetrafluoroethylene (PTFE) NPs, which are regarded as benchmark superhydrophobic NPs due to their low surface energy caused by the presence of fluorocarbon. Both a passive cavitation detection system and terephthalic dosimetry was applied to quantify the intensity of IC. The IC intensities of the suspension with PTFE NPs were 10.30 and 48.41 times stronger than those of deionized water for peak negative pressures of 2 and 5 MPa, respectively. However, the IC activities were nearly completely inhibited when the suspension was degassed or ethanol was used to suspend PTFE NPs, and they were recovered when suspended in saturated water, which may indicates the presence of interfacial NBs on PTFE NPs surfaces. Importantly, these PTFE NPs could sustainably initiate IC for excitation by a sequence of at least 6000 pulses, whereas lipid microbubbles were completely depleted after the application of no more than 50 pulses under the same conditions. The terephthalic dosimetry has shown that much higher hydroxyl yields were achieved when PTFE NPs were present as cavitation nuclei when using ultrasound parameters that otherwise did not produce significant amounts of free radicals. These results show that superhydrophobic NPs may be an outstanding candidate for use in IC-related applications.  相似文献   

3.
In theory,nanobubbles can stably exist with a lifetime of microseconds at most,but numerous experimental observations demonstrate that nanobubbles in bulk solution can be stable from hours to weeks.Although various conjectures on the stability mechanism of bulk nanobubbles,such as the contaminant mechanism,skin mechanism,surface zeta potential mechanism,are proposed,there has not yet been a unified conclusion.Since bulk nanobubbles show great potential in a wide spectrum of applications and are relevant to a number of unsolved questions on cavitation and nucleation,the debate over their stability mechanisms has been active.In the past,extensive studies have been carried out to understand the mechanism of nanobubble stability,and important insights have already been provided.This paper will provide a brief overview of our current understanding of the unexpected stability of bulk nanobubbles.  相似文献   

4.
Although various and unique properties of bulk nanobubbles have drawn researchers' attention over the last few years,their formation and stabilization mechanism has remained unsolved. In this paper, we use ultrasonic methods to produce bulk nanobubbles in the pure water and give a comprehensive study on the bulk nanobubbles properties and generation. The ultrasonic wave gives rise to constant oscillation in water where positive and negative pressure appears alternately. With the induced cavitation and presence of dissolved air, the bulk nanobubbles formed. "Nanosight"(which is a special instrument that combines dynamic light scattering with nanoparticle tracking analysis) was used to analyze the track and concentration of nanobubbles. Our results show that in our experiment, sufficient bulk nanobubbles were generated and we have proven they are not contaminations. We also found nanobubbles in the ultrasonic water change in both size and concentration with ultrasonic time.  相似文献   

5.
The interaction between liquid flow and solid boundary can result in cavitation formation when the local pressure drops below vaporization threshold. The cavitation dynamics does not depend only on basic geometry, but also on surface roughness, chemistry and wettability. From application point of view, controlling cavitation in fluid flows by surface functionalization is of great importance to avoid the unwanted effects of hydrodynamic cavitation (erosion, noise and vibrations). However, it could be also used for intensification of various physical and chemical processes. In this work, the surfaces of 10-mm stainless steel cylinders are laser textured in order to demonstrate how hydrodynamic cavitation behavior can be controlled by surface modification. The surface properties are modified by using a nanosecond (10–28 ns) fiber laser (wavelength of 1060 nm). In such a way, surfaces with different topographies and wettability were produced and tested in a cavitation tunnel at different cavitation numbers (1.0–2.6). Cavitation characteristics behind functionalized cylindrical surfaces were monitored simultaneously by high-speed visualization (20,000 fps) and high frequency pressure transducers. The results clearly show that cavitation characteristics differ significantly between different micro-structured surfaces. On some surfaces incipient cavitation is delayed and cavitation extent decreased in comparison with the reference – a highly polished cylinder. It is also shown that the increased surface wettability (i.e., hydrophilicity) delays the incipient cavitation.  相似文献   

6.
疏水表面纳米气泡的运动有重要的应用价值和研究意义。本文采用分子动力学方法,模拟了纳米通道壁面为超疏水性时壁面上气泡的运动状况。在质量力驱动下,随着外界驱动力的增大,两壁面上的气泡被逐渐拉长,同时逐渐变得扁平;前端"接触角"逐渐增大,而后端"接触角"逐渐减小。纳米通道内疏水性表面的纳米气泡随着外部驱动力的变化呈现出不同的形态,变化程度随着驱动力的增大而增大。在不同驱动力作用下,两个气泡总是保持相同的速度,气泡的速度与外力驱动的大小呈线性增长趋势。随着外力的增大,边界层及通道中心速度皆呈现增大趋势。  相似文献   

7.
Nanoparticles able to promote inertial cavitation when exposed to focused ultrasound have recently gained much attention due to their vast range of possible applications in the biomedical field, such as enhancing drug penetration in tumor or supporting ultrasound contrast imaging. Due to their nanometric size, these contrast agents could penetrate through the endothelial cells of the vasculature to target tissues, thus enabling higher imaging resolutions than commercial gas-filled microbubbles. Herein, Zinc Oxide NanoCrystals (ZnO NCs), opportunely functionalized with amino-propyl groups, are developed as novel nanoscale contrast agents that are able, for the first time, to induce a repeatedly and over-time sustained inertial cavitation as well as ultrasound contrast imaging. The mechanism behind this phenomenon is investigated, revealing that re-adsorption of air gas nanobubbles on the nanocrystal surface is the key factor for this re-chargeable cavitation. Moreover, inertial cavitation and significant echographic signals are obtained at physiologically relevant ultrasound conditions (MI < 1.9), showing great potential for low side-effects in in-vivo applications of the novel nanoscale agent from diagnostic imaging to gas-generating theranostic nanoplatforms and to drug delivery.  相似文献   

8.
Recent research has revealed several different techniques for nanoscopic gas nucleation on submerged surfaces, with findings seemingly in contradiction with each other. In response to this, we have systematically investigated the occurrence of surface nanobubbles on a hydrophobized silicon substrate for various different liquid temperatures and gas concentrations, which we controlled independently. We found that nanobubbles occupy a distinct region of this parameter space, occurring for gas concentrations of approximately 100%-110%. Below the nanobubble region we did not detect any gaseous formations on the substrate, whereas micropancakes (micron wide, nanometer high gaseous domains) were found at higher temperatures and gas concentrations. We moreover find that supersaturation of dissolved gases is not a requirement for nucleation of bubbles.  相似文献   

9.
The spallation of a nanometer-thick melt layer on a GaAs surface during its ablation by femtosecond laser pulses occurs with subnanosecond delays and lift-off velocities that depend on the laser fluence after its complete thermal (hydrodynamic) expansion/acoustic relaxation. The position of the spall interface in the melt is determined by the depth of the formation of a two-dimensional subsurface layer of nanobubbles (nanofoam), whereas the strongly heated surface layer of the melt above the nanofoam is partially removed in the form of a vapor-drop mixture. At the thermal expansion stage, acoustic reverberations are observed in the melt layer and characterize both the dynamics of an increase in its thickness and the shift of the cavitation region (nanofoam) inside the melt. Moreover, these reverberations can additionally stimulate spallation, promoting cavitation in the completely unloaded melt in the case of passage of a weak rarefaction wave.  相似文献   

10.
We report a comparative investigation of the topographic features and nanomechanical responses of surface nanobubbles,polymeric nanodrops, and solid microparticles submerged in water and probed by atomic force microscopy in different operating modes. We show that these microscopic objects exhibit similar topographies, either hemispherical or hemiellipsoidal, in the standard tapping mode, and thus are difficult to distinguish. However, distinct differences, caused not only by their different mechanical properties but also by different cantilever tip-sample mechanical interactions that are affected by tip wettability, were observed in successive topographic imaging with controlled scanning forces and the nanoindentation tests, allowing for the identification of surface nanobubbles. Based on the indentation force-distance curves, we further extrapolated the stiffness of surface nanobubbles spanning a wide range of sizes and then developed a simple theoretical model to explain this size dependence. We also demonstrate how size-dependent stiffness can be used to determine the surface tension of nanobubbles,which was found to be much lower than the bulk value of water.  相似文献   

11.
The observations of long-lived surface nanobubbles in various experiments have presented a theoretical challenge, as they were supposed to be dissolved in microseconds owing to the high Laplace pressure. However, an increasing number of studies suggest that contact line pinning, together with certain levels of oversaturation, is responsible for the anomalous stability of surface nanobubbles. This mechanism can interpret most characteristics of surface nanobubbles. Here, we summarize recent theoretical and computational work to explain how the surface nanobubbles become stable with contact line pinning. Other related work devoted to understanding the unusual behaviors of pinned surface nanobubbles is also reviewed here.  相似文献   

12.
How to produce nanobubbles repeatedly on a certain surface with sufficient amount is a key issue in nanobubbles research. It is well known that nanobubbles can be produced by exchanging water with organic solutions like alcohol which contains higher concentration of dissolved gas than that in water. However, it is not clear if this mechanism would work when exchanging water with the relatively low concentrations of dissolved gas such as salt solutions. In this paper, we employed NaCl solutions with different concentrations to replace water on graphite surface. We found that nanobubbles could indeed be generated and showed similar properties with those produced by other methods. Nanobubbles could be apparently observed when the NaCl concentration was as low as 0.15 M and their densities increased with the salt concentrations. When the concentration of NaCl was higher than 2.00 M, the number of nanobubbles increased slowly and nearly kept a constant. We also showed that the dissolved gas played an important role in the formation process of nanobubbles.  相似文献   

13.
The solubility of gases in aqueous salt solution decreases with the salt concentration, often termed the “salting-out effect.” The dissolution of salt in water is followed by dissociation of salt and further solvation of ions with water molecules. The solvation weakens the affinity of gaseous molecules, and thus it releases the excess dissolved gas. Now it is interesting to know that what happens to the excess gas released during salting-out? Since it is imperative to note that the transfer of the dissolved gas in the bulk liquid may often occur in the form of nanobubbles. In this work, we have answered this question by investigating the nano-entities nucleation during the salting-out effect. The solubility of gases in aqueous salt solution decreases with the salt concentration, and it is often termed as the “salting-out effects.” The dissolution of salt in water undergoes dissociation of salt and further solvation of ions with water molecules. The solvation weakens the affinity of gaseous molecules, and thus it releases the excess dissolved gas. Now it is interesting to know that what happens to the excess gas released during salting-out? While it is also imperative to note that the gas transfer in the bulk liquid often occurs in the form of bubbles. With this hypothesis, we have experimentally investigated that whether the salting-out effect nucleates nanobubble or not. What is the strong scientific evidence to prove that they are nanobubbles? Does the salting-out parameter affect the number density? The answers to such questions are essential for the fundamental understanding of the origin and driving force for nanobubble generation. We have provided three distinct proofs for the nano-entities to be the nanobubbles, namely, (1) by freezing and thawing experiments, (2) by destroying the nanobubbles under ultrasound field, and (3) we also proposed a novel method for refractive index estimation of nanobubbles to differentiate them from nano drops and nanoparticles. The refractive index (RI) of nanobubbles was estimated to be 1.012 for mono- and di-valent salts and 1.305 for trivalent salt. The value of RI closer to 1 provides strong evidence of gas-filled nanobubbles. Both positive and negative charged nanobubbles nucleate during the salting-out effect depending upon the valency of salt. The nanobubbles during the salting-out effect are stable only for up to three days. This shorter stability could plausibly be due to reduced colloidal stability at a low surface charge.  相似文献   

14.
It has been reported that nanobubbles can be produced by ultrasonication. However, it remains unclear whether part of the contribution of ultrasonication on flotation performance can be attributed to the generation of nanobubbles. In this work, we systematically studied this point of ultrasonication by combining a series of techniques including flotation testing, AFM (atomic force microscope) measurement, and settling testing. AFM imaging showed that no surface nanobubbles were found at the HOPG-water interface before and after subjection to ultrasonication. Further, surface nanobubbles were generated with solution exchange before ultrasonciation and then they were subjected to ultrasonication. It was found that ultrasonication did not destroy the pre-existing surface nanobubbles at the HOPG (highly oriented pyrolytic graphite) -water interface. Settling tests and flotation tests indicate that ultrasonication has a negligible influence on the interaction between graphite particles and thus flotation performance. Nanobubbles were not one of the outcomes for ultrasonication.  相似文献   

15.
The dynamic actions of cavitation bubbles in ultrasonic fields can clean surfaces. Gas and vapor cavitation bubbles exhibit different dynamic behaviors in ultrasonic fields, yet little attention has been given to the distinctive cleaning effects of gas and vapor bubbles. We present an experimental investigation of surface cleaning by gas and vapor bubbles in an ultrasonic field. Using high-speed videography, we found that the primary motions of gas and vapor bubbles responsible for surface cleaning differ. Our cleaning tests under different contamination conditions in terms of contaminant adhesion strength and surface wettability reveal that vapor and gas bubbles are more effective at removing contaminants with strong and weak adhesion, respectively, and furthermore that hydrophobic substrates are better cleaned by vapor bubbles. Our study not only provides a better physical understanding of the ultrasonic cleaning process, but also proposes novel techniques to improve ultrasonic cleaning by selectively employing gas and vapor bubbles depending on the characteristics of the surface to be cleaned.  相似文献   

16.
周利民  王硕  邱杰  王磊  王兴亚  李宾  张立娟  胡钧 《中国物理 B》2017,26(10):106803-106803
Interfacial gaseous nanobubbles which have remarkable properties such as unexpectedly long lifetime and significant potential applications, are drawing more and more attention. However, the recent dispute about the contamination or gas inside the nanobubbles causes a large confusion due to the lack of simple and clean method to produce gas nanobubbles.Here we report a convenient and clean method to effectively produce interfacial nanobubbles based on a pure water system.By adding the cold water cooled at 4℃ for more than 48 h onto highly oriented pyrolytic graphite(HOPG) surface, we find that the average density and total volume of nanobubbles are increased to a high level and mainly dominated by the concentrations of the dissolved gases in cold water. Our findings and methods are crucial and helpful for settling the newly arisen debates on gas nanobubbles.  相似文献   

17.
Electrokinetic potential of particles has been extensively studied in colloidal systems over the past century, while up to date, the influence of gas on electrokinetic behaviors of particles has not been fully understood yet. In this study, the electrokinetic response of particles to gas nucleation was systematically investigated with coal as the object. The results showed that the nucleation of gas (both on particle surfaces and in water) significantly changed the particle’ electrokinetic behaviors. Higher gas content and particle’s surface hydrophobicity normally trigger more intensive gas nucleation, thus inducing more significant reduction of particle zeta potential. After gas nucleation, numerous nanobubbles (NBs) appear in the suspensions mainly in two forms: NBs adhering onto solid surfaces (ANBs) and NBs stagnating in bulk solutions (BNBs). ANBs not only enhance the surface heterogeneity, but also cause the “steric hindrance” effect, and electric double layer (EDL) overlapping and associated ions shielding towards charged particles, which significantly decrease their electrokinetic potentials. Although BNBs can also reduce the zeta potential of particles by EDL compressing, their functions are rather limited.  相似文献   

18.
Bubbles on the nanometer scale were produced by a special method on solid surfaces. Atomic Force Microscopy (AFM) was used to detect these bubbles. It shows that nanobubbles can be seen clearly in the interfaces of liquid/graphite and liquid/mica. In AFM images, the nanobubbles appeared like bright spheres. Some of the bubbles kept stable for hours during the experiments. The bubbles were disturbed under high load during AFM imaging. The conformation of the bubbles is influenced by the atomic steps on the graphite substrate. In addition, a shadow was found around the bubbles, which was due to the interactions between a bubble adhered to the tip and a bubble on the substrate.  相似文献   

19.
The interplay among the cavitation structures and the shock waves following a nanosecond laser breakdown in water in the vicinity of a concave surface was visualized with high-speed shadowgraphy and schlieren cinematography. Unlike the generation of the main cavitation bubble near a flat or a convex surface, the concave surface refocuses the emitted shock waves and causes secondary cavitation near the acoustic focus which is most pronounced when triggered by the shock wave released during the first main bubble collapse. The shock wave propagation, reflection from the concave surface and its scattering on the dominant cavity is clearly resolvable on the shadowgraphs. The schlieren approach revealed the pressure build up in the last stage of the collapse and the first stage of the rebound. A persistent low-density watermark is left behind the first collapse. The observed effects are important wherever cavities collapse near indented surfaces, such as in cavitation peening, cavitation erosion and ophthalmology.  相似文献   

20.
Traditional abrasive fluid jet polishing (FJP) is limited by its high-pressure equipment, unstable material removal rate, and applicability to ultra-smooth surfaces because of the evident air turbulence, fluid expansion, and a large polishing spot in high-pressure FJP. This paper presents a novel cavitation fluid jet polishing (CFJP) method and process based on FJP technology. It can implement high-efficiency polishing on small-scale surfaces in a low-pressure environment. CFJP uses the purposely designed polishing equipment with a sealed chamber, which can generate a cavitation effect in negative pressure environment. Moreover, the collapse of cavitation bubbles can spray out a high-energy microjet and shock wave to enhance the material removal. Its feasibility is verified through researching the flow behavior and the cavitation results of the negative pressure cavitation machining of pure water in reversing suction flow. The mechanism is analyzed through a computational fluid dynamics simulation. Thus, its cavitation and surface removal mechanisms in the vertical CFJP and inclined CFJP are studied. A series of polishing experiments on different materials and polishing parameters are conducted to validate its polishing performance compared with FJP. The maximum removal depth increases, and surface roughness gradually decreases with increasing negative outlet pressures. The surface becomes smooth with the increase of polishing time. The experimental results confirm that the CFJP process can realize a high material removal rate and smooth surface with low energy consumption in the low-pressure environment, together with compatible surface roughness to FJP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号