首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Microcavity exciton-polaritons within GaN-based structures are the object of the present work. The impact of the structural imperfections on the properties of the two-dimensional polariton gas is investigated through the calculation of its phase diagram. We demonstrate that the presence of disorder first induces a quasi-phase transition of the polariton system towards a Bose-glass phase before it becomes superfluid as its density increases. Calculations of the density of states as well as the condensate wavefunction and the related spectrum of elementary excitations in the framework of the Gross-Pitaevskii theory provide further insight into the properties of exciton-polaritons in GaN-based microcavities.  相似文献   

2.
The ground-state phase diagram of a two-dimensional Bose system with dipole-dipole interactions is studied by means of a quantum Monte Carlo technique. Our calculation predicts a quantum phase transition from a gas to a solid phase when the density increases. In the gas phase, the condensate fraction is calculated as a function of the density. Using the Feynman approximation, the collective excitation branch is studied and the appearance of a roton minimum is observed. The results of the static structure factor at both sides of the gas-solid phase are also presented. The Lindemann ratio at the transition point becomes gamma=0.230(6). The condensate fraction in the gas phase is estimated as a function of the density.  相似文献   

3.
K. Zarembo 《JETP Letters》2002,75(2):59-62
Thermal pion fluctuations, in principle, can completely disorder the phase of quark condensate and thus restore chiral symmetry. If this happens before the quark condensate melts, strongly interacting matter will be in the pseudogap state just above the chiral phase transition. The quark condensate does not vanish locally, and quarks acquire constituent masses in the pseudogap phase, despite the fact that chiral symmetry is restored.  相似文献   

4.
By introducing the dressed Polayakov loop or dual chiral condensate as a candidate order parameter to describe the deconfinement phase transition for light flavors, we discuss the interplay between the chiral and deconfinement phase transitions, and propose the possible QCD phase diagram at finite temperature and density. We also introduce a dynamical gluodynamic model with dimension-2 gluon condensate, which can describe the color electric deconfinement as well as the color magnetic confinement.  相似文献   

5.
郑强  易善峰  胡长刚 《中国物理 B》2014,23(2):26401-026401
The effect of decoherence on the phase transition of a Bose-Einstein condensate in a symmetric double-well potential is determined by the mean atom number difference. It still has two phases, the tunneling phase and the self-trapping phase, even under decoherence. The density matrix and the operator fidelity also show very different behaviors in the two phases. This suggests that operator fidelity can be used to characterize the phase transition of this Bose-Einstein condensate model, even under decoherence.  相似文献   

6.
Based on the topological structure of gauge theory, an effective dual version of QCD has been reviewed and analyzed for the phase structure and color confining properties of QCD by invoking the dynamical magnetic symmetry breaking. The multi-flux-tube configuration of condensed QCD vacuum has been explored and associated glueball masses and inter-quark potential have been derived. Thermal response of QCD vacuum has been analyzed using path-integral formalism alongwith the mean-field approach and associated thermodynamical potential is used to derive thermal form of glueball masses, monopole condensate, inter-quark potential and monopole density which then lead to an estimate of the critical temperature of QCD phase transition. During its thermal evolution, a smooth transition of hadronic system via a weakly bound QGP phase to the fully deconfined phase is established and the thermal evolution profiles of various parameters are shown to indicate a second-order deconfinement phase transition and the restoration of magnetic symmetry. Monopole density calculations have been shown to lead to gradual evaporation of magnetic condensate into thermal monopoles during QCD phase transition.  相似文献   

7.
The Superstable Weakly Imperfect Bose-Gas (Sup-WIBG) was originally proposed to solve some inconsistencies of the Bogoliubov theory based on the WIBG. The grand-canonical thermodynamics of the Sup-WIBG has been recently studied in details but only out of the point of the (first order) phase transition. The present paper closes this gap. The key technical tools are the Large Deviations (LD) formalism and in particular the analysis of the Kac distribution function. It turns out that the condensate fraction discontinuity as a function of the chemical potential (that occurs at the phase transition point) disappears if one considers it as a function of the total particle density. We prove that at this point the equilibrium state of the Sup-WIBG is a mixture of two (low- and high-density) pure phases related to two critical particle densities. Non-zero Bose-Einstein condensate starts at the smaller critical density and continuously grows (for a constant chemical potential) until the second critical density. For higher particle densities, the Bose condensate fraction as well as the chemical potential both increase monotonously.  相似文献   

8.
We consider disorder effect on electron-hole pairing in the system of two graphene monolayers separated by dielectric barrier. The influence of charged impurities on temperature of phase transition is studied. In spite of large values of mobility of charge carriers in graphene disorder can considerably reduce temperature of electron-hole condensation in weak-coupling regime. The quantum hydrodynamics of the system is considered and phase stiffness of electron-hole condensate and temperature of Berezinskii-Kosterlitz-Thouless transition to the superfluid state are calculated.  相似文献   

9.
Meson corrections on the chiral condensate up to next-to-leading order in a 1/Nc expansion at finite density are investigated in the NJL model with explicit chiral symmetry breaking. Compared with mean-field results, the chiral phase transition is still of the first order while the properties near the critical density for chiral phase transition are found to change significantly.  相似文献   

10.
We include the effect of the Δ-isobar resonance in the equation of state for neutron star matter in the presence of a pion condensate. We find matter undergoing a first order phase transition after a seconf order phase transition at a much lower density.  相似文献   

11.
Huan Zhang 《中国物理 B》2022,31(7):70305-070305
We present numerical results of a one-dimensional spin-orbit coupled Bose-Einstein condensate expanding in a speckle disorder potential by employing the Gross-Pitaevskii equation. Localization properties of a spin-orbit coupled Bose-Einstein condensate in zero-momentum phase, magnetic phase and stripe phase are studied. It is found that the localizing behavior in the zero-momentum phase is similar to the normal Bose-Einstein condensate. Moreover, in both magnetic phase and stripe phase, the localization length changes non-monotonically as the fitting interval increases. In magnetic phases, the Bose-Einstein condensate will experience spin relaxation in disorder potential.  相似文献   

12.
The models of translationally invariant infinite nuclear matter in the relativistic mean field models are very interesting and simple, since the nucleon can connect only to a constant vector and scalar meson field. Can one connect these to the complicated phase transitions of QCD? For an affirmative answer to this question, one must consider models where the coupling contstants to the scalar and vector fields depend on density in a nonlinear way, since as such the models are not explicitly chirally invariant. Once this is ensured, indeed one can derive a quark condensate indirectly from the energy density of nuclear matter which goes to zero at large density and temperature. The change to zero condensate indicates a smooth phase transition.  相似文献   

13.
The models of translationally invariant infinite nuclear matter in the relativistic mean field models are very interesting and simple, since the nucleon can connect only to a constant vector and scalar meson field. Can one connect these to the complicated phase transitions of QCD? For an affirmative answer to this question, one must consider models where the coupling contstants to the scalar and vector fields depend on density in a nonlinear way, since as such the models are not explicitly chirally invariant. Once this is ensured, indeed one can derive a quark condensate indirectly from the energy density of nuclear matter which goes to zero at large density and temperature. The change to zero condensate indicates a smooth phase transition.  相似文献   

14.
We reexamine dipolar motion of condensate atoms in one-dimensional optical lattices and harmonic magnetic traps including quantum fluctuations within the truncated Wigner approximation. In the strong tunneling limit we reproduce the mean field results with a sharp dynamical transition at the critical displacement. When the tunneling is reduced, on the contrary, strong quantum fluctuations lead to finite damping of condensate oscillations even at infinitesimal displacement. We argue that there is a smooth crossover between the chaotic classical transition at finite displacement and the superfluid-to-insulator phase transition at zero displacement. We further analyze the time dependence of the density fluctuations and of the coherence of the condensate and find several nontrivial dynamical effects, which can be observed in the present experimental conditions.  相似文献   

15.
The addition of atomic hydrogen to the set of gases in which Bose–Einstein condensation can be observed expands the range of parameters over which this remarkable phenomenon can be studied. Hydrogen, with the lowest atomic mass, has the highest transition temperature, 50 μK in our experiments. The very weak interaction between the atoms results in a high ratio of the condensate to normal gas densities, even at modest condensate fractions. Using cryogenic rather than laser precooling generates large condensates. Finally, two-photon spectroscopy is introduced as a versatile probe of the phase transition: condensation in real space is manifested by the appearance of a high-density component in the gas, condensation in momentum space is readily apparent in the momentum distribution, and the phase transition line can be delineated by following the evolution of the density of the normal component.  相似文献   

16.
We consider a dynamical phase transition induced by a short optical pulse in a system prone to thermodynamical instability. We address the case of pumping to excitons whose density contributes directly to the order parameter. To describe both thermodynamic and dynamic effects on equal footing, we adopt a view of the excitonic insulator for the phase transition and suggest a formation of the Bose condensate for the pumped excitons. The work is motivated by experiments in donor–acceptor organic compounds with a neutral- ionic phase transition coupled to the spontaneous lattice dimerization and to charge transfer excitons. The double nature of the ensemble of excitons leads to an intricate time evolution, in particular, to macroscopic quantum oscillations from the interference between the Bose condensate of excitons and the ground state of the excitonic insulator. The coupling of excitons and the order parameter also leads to self-trapping of their wave function, akin to self-focusing in optics. The locally enhanced density of excitons can surpass a critical value to trigger the phase transformation, even if the mean density is below the required threshold. The system is stratified in domains that evolve through dynamical phase transitions and sequences of merging. The new circumstances in experiments and theory bring to life, once again, some remarkable inventions made by L.V. Keldysh.  相似文献   

17.
The pion-condensed state of neutron-rich matter at finite temperature is calculated within the framework of a simple σ-model, treating the pion field as a mean field. At high densities the matter is condensed with a spatially non-uniform condensate. However, we find the unexpected result that as the density is lowered, at any finite temperature, pure neutron matter always makes a transition to a state with a spatially uniform condensate. Pure neutron matter, within mean field theory, is condensed at all non-zero temperatures and densities. Matter with a small proton fraction at zero temperature has a qualitatively similar phase diagram, except that it is normal when both the temperature and density are sufficiently low.  相似文献   

18.
A stress-induced stripe phase of submonolayer Pd on W(110) is observed by low-energy electron microscopy. The temperature dependence of the pattern is explained by the change both in the boundary free energy and elastic relaxation energy due to the increasing boundary width. The stripes are shown to disorder when the correlation length of the condensed phase becomes comparable to its period, while the condensate to lattice-gas transition takes place at a higher temperature, as revealed by low-energy electron diffraction.  相似文献   

19.
We study the coherence and density modulation of a nonequilibrium exciton-polariton condensate in a one-dimensional valley with disorder. By means of interferometric measurements we evidence a modulation of the first-order coherence function and we relate it to a disorder-induced modulation of the condensate density, that increases as the pump power is increased. The nonmonotonic spatial coherence function is found to be the result of the strong nonequilibrium character of the one-dimensional system, in the presence of disorder.  相似文献   

20.
Meson corrections on the chiral condensate up to next-to-leading order in a 1/Nc expansion at finite densityare investigated in the NJL model with explicit chiral symmetry breaking. Compared with mean-field results, the chiralphase transition is still of the first order while the properties near the critical density for chiral phase transition are foundto change significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号