首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent theory [Phys. Rev. Lett. 96, 066102 (2006)] and experiment [Phys. Rev. Lett. 99, 026102 (2007)] show that (0001) ultrathin films of wurtzite (WZ) materials surprisingly transform into a stable graphitelike structure, but the stability is limited to thicknesses of only a few atomic layers. Using first-principles calculations of both freestanding and substrate-supported thin films, we predict that the thickness range of stable graphitic films depends sensitively on strain and can be substantially extended to much thicker films by epitaxial tensile strain. Moreover, the band gap of the stable strained graphitic films can be tuned over a wide range either above or below that of the bulk WZ phase.  相似文献   

2.
Control of the charge state of metal atoms on thin MgO films   总被引:1,自引:0,他引:1  
The arrangement of single gold and palladium atoms deposited on the surface of a 3 monolayer thin film of MgO was investigated using low-temperature scanning tunneling microscopy. While Pd atoms are arranged in a random fashion, Au forms an ordered array on the surface. The long-range ordering as well as the scanning tunneling microscopy appearance of single Au atoms on a 3 monolayer thin MgO film can be explained by partial charge transfer from the substrate to Au atoms as predicted recently by density functional theory calculations [Phys. Rev. Lett. 94, 226104 (2005)10.1103/PhysRevLett.94.226104]. In contrast with that, Au atoms on a thick film were found to be essentially neutral.  相似文献   

3.
C. Stuhlmann  U. Beckers  H. Ibach 《Surface science》1990,230(1-3):L180-L182
In a recent Letter Egawa et al. [Surf. Sci. 215 (1989) L271] presented a detailed study of hydrogen adsorption on ultrathin iron films on the Cu(100) surface. They found the surface to reconstruct upon hydrogen adsorption and pointed out the analogy to a reconstruction reported in our previous Letter [Phys. Rev. Lett. 60 (1988) 2741]. In this Letter we present evidence that the cited reconstruction is a genuine feature of the clean iron films and is not caused by hydrogen adsorption.  相似文献   

4.
We study the Stark effect on doubly excited states of the helium atom below N=2. We present the ab initio photoionization and total inelastic photon scattering cross sections calculated with the method of complex scaling for field strengths F 相似文献   

5.
Submonolayer Bi and Au adsorptions on the GaAs(001)-2× 4 surface are investigated by scanning tunnelling microscopy, low energy electron diffraction and first-principles calculations. The 1 ×4 and 3 × 4 reconstructed surface induced by Bi and Au, respectively, are revealed and their structural models are proposed based on experiments and first-principles calculations. Moreover, the validity of the recently proposed generalized electron counting (GEC) model [Phys. Rev. Lett. 97 (2006) 126103] is examined in detail by using the two surfaces. The GEC model perfectly explains the structural features, such Bi-1 × 4 surface and the 3x arrangement of four-atom Au as the characteristic short double-line structure in the clusters.  相似文献   

6.
Quantum well (QW) resonances in Fe(001)/MgO/Fe/MgO/Fe double barrier magnetic tunnel junctions are calculated from first principles. By including the Coulomb blockade energy due to the finite size islands of the middle Fe film, we confirm that the oscillatory differential resistance observed in a recent experiment [T. Nozaki, Phys. Rev. Lett. 96, 027208 (2006)10.1103/PhysRevLett.96.027208] originates from the QW resonances from the Delta1 band of the Fe majority-spin channel. The primary source of smearing at low temperatures is shown to be the variation of the Coulomb blockade energy.  相似文献   

7.
It is shown that it is now possible to include van der Waals (vdW) interactions via a nonempirical implementation of density functional (DF) theory to describe the correlation energy in electronic structure calculations on infinite systems of no particular symmetry. The vdW-DF theory [Phys. Rev. Lett. 92, 246401 (2004)] is applied to the adsorption of benzene and naphthalene on an infinite sheet of graphite, as well as the binding between two graphite sheets. A comparison with recent thermal-desorption data [Phys. Rev. B 69, 155406 (2004)] shows great promise for the vdW-DF method.  相似文献   

8.
By taking careful account of slab thickness and adsorbate orientation effects we present, for the first time, periodic density functional calculations predicting the preference of water to adsorb in a molecular state on the ideal rutile TiO2(110) surface at all coverages < or =1 monolayer (ML). Moreover, while this has been predicted previously for 1/4 ML coverage [Phys. Rev. Lett. 87, 266104 (2001)]], we show that the assertion made in that work, that dissociation is energetically unfeasible on the ideal surface, is incorrect. Our results thus resolve a long-standing discrepancy between theory and experiment and significantly improve the understanding of water chemistry on TiO2 surfaces.  相似文献   

9.
《Surface Science Reports》2014,69(4):366-388
Both density functional theory calculations and numerous experimental studies demonstrate a variety of unique features in metal supported oxide films and transition metal doped simple oxides, which are markedly different from their unmodified counterparts. This review highlights, from the computational perspective, recent literature on the properties of the above mentioned surfaces and how they adsorb and activate different species, support metal aggregates, and even catalyse reactions. The adsorption of Au atoms and clusters on metal-supported MgO films are reviewed together with the cluster׳s theoretically predicted ability to activate and dissociate O2 at the Au–MgO(100)/Ag(100) interface, as well as the impact of an interface vacancy to the binding of an Au atom. In contrast to a bulk MgO surface, an Au atom binds strongly on a metal-supported ultra-thin MgO film and becomes negatively charged. Similarly, Au clusters bind strongly on a supported MgO(100) film and are negatively charged favouring 2D planar structures. The adsorption of other metal atoms is briefly considered and compared to that of Au. Existing computational literature of adsorption and reactivity of simple molecules including O2, CO, NO2, and H2O on mainly metal-supported MgO(100) films is discussed. Chemical reactions such as CO oxidation and O2 dissociation are discussed on the bare thin MgO film and on selected Au clusters supported on MgO(100)/metal surfaces. The Au atoms at the perimeter of the cluster are responsible for catalytic activity and calculations predict that they facilitate dissociative adsorption of oxygen even at ambient conditions. The interaction of H2O with a flat and stepped Ag-supported MgO film is summarized and compared to bulk MgO. The computational results highlight spontaneous dissociation on MgO steps. Furthermore, the impact of water coverage on adsorption and dissociation is addressed. The modifications, such as oxygen vacancies and dopants, at the oxide–metal interface and their effect on the adsorption characteristics of water and Au are summarized. Finally, more limited computational literature on transition metal (TM) doped CaO(100) and MgO(100) surfaces is presented. Again, Au is used as a probe species. Similar to metal-supported MgO films, Au binds more strongly than on undoped CaO(100) and becomes negatively charged. The discussion focuses on rationalization of Au adsorption with the help of Born–Haber cycle, which reveals that the so-called redox energy including the electron transfer from the dopant to the Au atom together with the simultaneous structural relaxation of lattice atoms is responsible for enhanced binding. In addition, adsorption energy dependence on the position and type of the dopant is summarized.  相似文献   

10.
A self-energy-functional approach is applied to construct cluster approximations for correlated lattice models. It turns out that the cluster-perturbation theory [Phys. Rev. Lett. 84, 522 (2000)]] and the cellular dynamical mean-field theory [Phys. Rev. Lett. 87, 186401 (2001)]] are limiting cases of a more general cluster method. The results for the one-dimensional Hubbard model are discussed with regard to boundary conditions, bath degrees of freedom, and cluster size.  相似文献   

11.
Investigation of thin metallic film properties by means of picosecond ultrasonics [C. Thomsen et al., Phys. Rev. Lett. 53, 989 (1984)] has been under the scope of several studies. Generation of longitudinal and shear waves [T. Pézeril et al., Phys. Rev. B 73, 132301 (2006); O. Matsuda et al., Phys. Rev. Lett. 93, 095501 (2004)] with a wave vector normal to the film free surface has been demonstrated. Such measurements cannot provide complete information about properties of anisotropic films. Extreme focusing of a laser pump beam (≈0.5 μm) on the sample surface has recently allowed us to provide evidence of picosecond acoustic diffraction in thin metallic films (≈1 μm) [C. Rossignol et al., Phys. Rev. Lett. 94, 166106 (2005)]. The resulting longitudinal and shear wavefronts propagate at group velocity through the bulk of the film. To interpret the received signals, source directivity diagrams are calculated taking into account material anisotropy, optical penetration, and laser beam width on the sample surface. It is shown that acoustic diffraction increases with optical penetration, so competing with the increasing of directivity caused by beam width. Reflection with mode conversion at the film-substrate interface is discussed.  相似文献   

12.
The problem of single photon collective spontaneous emission, a.k.a. superradiance, from N atoms prepared by a single photon pulse of wave vector k0 has been the subject of recent interest. It has been shown that a single photon absorbed uniformly by the N atoms will be followed by spontaneous emission in the same direction [M. Scully, E. Fry, C.H.R. Ooi, K. Wodkiewicz, Phys. Rev. Lett. 96 (2006) 010501; M. Scully, Laser Phys. 17 (2007) 635]; and in extensions of this work we have found a new kind of cavity QED in which the atomic cloud acts as a cavity containing the photon [A.A. Svidzinsky, J.T. Chang, M.O. Scully, Phys. Rev. Lett. 100 (2008) 160504]. In most of our studies, we have neglected virtual photon (“Lamb shift”) contributions. However, in a recent interesting paper, Friedberg and Mannassah [R. Friedberg, J.T. Manassah, Phys. Lett. A 372 (2008) 2514] study the effect of virtual photons investigating ways in which such effects can modify the time dependence and angular distributions of collective single photon emission. In the present Letter, we show that such virtual transitions play no essential role in our problem. The conclusions of [M. Scully, E. Fry, C.H.R. Ooi, K. Wodkiewicz, Phys. Rev. Lett. 96 (2006) 010501; M. Scully, Laser Phys. 17 (2007) 635; A.A. Svidzinsky, J.T. Chang, M.O. Scully, Phys. Rev. Lett. 100 (2008) 160504] stand as published. However, the N atom Lamb shift is an interesting problem in its own right and we here extend previous work both analytically and numerically.  相似文献   

13.
Here I argue that Liu and Li [B.-Y. Liu, C.-F. Li, Opt. Commun. 281 (2008) 3427] reproduce calculations of the Imbert-Fedorov transverse shift previously made in a number of other works. However, it has recently been shown that these results are not valid for standard uniformly polarized beams. The corrected values of the Imbert-Fedorov shift were derived in papers [K.Y. Bliokh, Y.P. Bliokh, Phys. Rev. Lett. 96 (2006) 073903; Phys. Rev. E 75 (2007) 066609] and confirmed by recent measurements [O. Hosten, P. Kwiat, Science 319 (2008) 787] with a great accuracy.  相似文献   

14.
Utilizing a microwave setup, we experimentally verify our recently developed theory of energy squeezing and tunneling [Phys. Rev. Lett. 97, 157403 (2006)10.1103/PhysRevLett.97.157403] through an ultranarrow waveguide channel that mimics zero-permittivity properties. Exploiting the infinite phase velocity supported by a waveguide transition section at cutoff, we test our theory of tunneling in this zero-permittivity region without use of resonant inclusions. This "supercoupling" is shown to have unique anomalous properties: an almost uniform phase along the narrow channel and weak dependence over its geometry.  相似文献   

15.
We explore the capability of spin-1/2 chains to act as quantum channels for both teleportation and transfer of qubits. Exploiting the emergence of long-distance entanglement in low-dimensional systems [Phys. Rev. Lett. 96, 247206 (2006)10.1103/Phys.Rev.Lett.96, 247206(2006)], here we show how to obtain high communication fidelities between distant parties. An investigation of protocols of teleportation and state transfer is presented, in the realistic situation where temperature is included. Basing our setup on antiferromagnetic rotationally invariant systems, both protocols are represented by pure depolarizing channels. We propose a scheme where channel fidelity close to 1 can be achieved on very long chains at moderately small temperature.  相似文献   

16.
《Physica A》2006,371(1):130-134
Investigations on diffusion in systems with memory [I.V.L. Costa, R. Morgado, M.V.B.T. Lima, F.A. Oliveira, Europhys. Lett. 63 (2003) 173] have established a hierarchical connection between mixing, ergodicity, and the fluctuation–dissipation theorem (FDT). This hierarchy means that ergodicity is a necessary condition for the validity of the FDT, and mixing is a necessary condition for ergodicity. In this work, we compare those results with recent investigations using the Lee recurrence relations method [M.H. Lee, Phys. Rev. B 26 (1982) 2547; M.H. Lee, Phys. Rev. Lett. 87 (2001) 250601; M.H. Lee, J. Phys. A: Math. Gen. 39 (2006) 4651]. Lee shows that ergodicity is violated in the dynamics of the electron gas [M.H. Lee, J. Phys. A: Math. Gen. 39 (2006) 4651]. This reinforces both works and implies that the results of [I.V.L. Costa, R. Morgado, M.V.B.T. Lima, F.A. Oliveira, Europhys. Lett. 63 (2003) 173] are more general than the framework in which they were obtained. Some applications to slow relaxation phenomena are discussed.  相似文献   

17.
Recent scaling results for the ac conductivity of ionic glasses by Roling et al. [Phys. Rev. Lett. 78, 2160 (1997)] and Sidebottom [Phys. Rev. Lett. 82, 3653 (1999)] are discussed. We prove that Sidebottom's version of scaling is completely general. A new approximation to the universal ac conductivity arising in the extreme disorder limit of the symmetric hopping model, the "diffusion cluster approximation," is presented and compared to computer simulations and experiments.  相似文献   

18.
We report on the observation of terahertz transparency in random arrays of the single rectangular holes and slits with the areal coverage of only 12%. The terahertz transparency occurs at the fundamental shape resonance of the rectangular holes and confirms the theoretical predictions of earlier works of García-Vidal et al. [Phys. Rev. Lett. 95, 103901 (2005)] on single rectangular holes and of Ruan and Qiu [Phys. Rev. Lett. 96, 233901 (2006)] on random arrays of holes.  相似文献   

19.
A large exchange splitting of the conduction band in ultrathin films of the ferromagnetic semiconductor EuO was determined quantitatively, by using EuO as a tunnel barrier and fitting the current-voltage characteristics and temperature dependence to tunneling theory. This exchange splitting leads to different tunnel barrier heights for spin-up and spin-down electrons and is large enough to produce a near-fully spin-polarized current. Moreover, the magnetic properties of these ultrathin films (<6 nm) show a reduction in Curie temperature with decreasing thickness, in agreement with theoretical calculation [R. Schiller, Phys. Rev. Lett. 86, 3847 (2001)10.1103/Phys. Rev. Lett.86.3847].  相似文献   

20.
We have studied the dislocation structures that occur in films of Ag, Au, and Ag0.5Au0.5 alloy on a Ru(0 0 0 1) substrate. Monolayer (ML) films form herringbone phases while films two or more layers thick contain triangular patterns of dislocations. We use scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) to determine how the film composition affects the structure and periodicity of these ordered structures. One layer of Ag forms two different herringbone phases depending on the exact Ag coverage and temperature. Low-energy electron microscopy (LEEM) establishes that a reversible, first-order phase transition occurs between these two phases at a certain temperature. We critically compare our 1 ML Ag structures to conflicting results from an X-ray scattering study [H. Zajonz et al., Phys. Rev. B 67 (2003) 155417]. Unlike Ag, the herringbone phases of Au and AgAu alloy are independent of the exact film coverage. For two layer films in all three systems, none of the dislocations in the triangular networks thread into the second film layer. In all three systems, the in-plane atomic spacing of the second film layer is nearly the same as in the bulk. Film composition does, however, affect the details of the two layer structures. Ag and Au films form interconnected networks of dislocations, which we refer to as “trigons.” In 2 ML AgAu alloy, the dislocations form a different triangular network that shares features of both trigon and moiré structures. Yet another well-ordered structure, with square symmetry, forms at the boundaries of translational trigon domains in 2 ML Ag films but not in Au films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号