首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 882 毫秒
1.
A large number of AgI-based fast-ion-conducting glasses have been investigated by K-iodine extended x-ray absorption fine structure spectroscopy (EXAFS) measurements at liquid nitrogen temperature. A general correlation between the I-Ag distance measured by EXAFS and the glass activation energy for dc ionic conductivity has been found out: glasses with longer I-Ag distances display higher ionic conductivity, independently from the chemical composition of their host glassy matrix. This behavior can be related to the progressive increase of the "pathway volume" for ionic conduction.  相似文献   

2.
3.
龚静  宫振丽  闫晓丽  高舒  张忠良  王波 《中国物理 B》2012,21(10):107803-107803
The positron annihilation lifetime and ionic conductivity are each measured as a function of organophilic rectorite(OREC) content and temperature in a range from 160 K to 300 K.According to the variation of ortho-positronium(o-Ps) lifetime with temperature,the glassy transition temperature is determined.The continuous maximum entropy lifetime(MELT) analysis clearly shows that the OREC and temperature have important effects on o-Ps lifetime and free volume distribution.The experimental results show that the temperature dependence of ionic conductivity obeys the Vogel-Tammann-Fulcher(VTF) and Williams-Landel-Ferry(WLF) equations,implying a free-volume transport mechanism.A linear least-squares procedure is used to evaluate the apparent activation energy related to the ionic transport in the VTF equation and several important parameters in the WLF equation.It is worthwhile to notice that a direct linear relationship between the ionic conductivity and free volume fraction is established using the WLF equation based on the free volume theory for nanocomposite electrolyte,which indicates that the segmental chain migration and ionic migration and diffusion could be explained by the free volume theory.  相似文献   

4.
The positron annihilation lifetime and ionic conductivity are each measured as a function of organophilic rectorite(OREC) content and temperature in a range from 160 K to 300 K.According to the variation of ortho-positronium(o-Ps) lifetime with temperature,the glassy transition temperature is determined.The continuous maximum entropy lifetime(MELT) analysis clearly shows that the OREC and temperature have important effects on o-Ps lifetime and free volume distribution.The experimental results show that the temperature dependence of ionic conductivity obeys the Vogel-Tammann-Fulcher(VTF) and Williams-Landel-Ferry(WLF) equations,implying a free-volume transport mechanism.A linear least-squares procedure is used to evaluate the apparent activation energy related to the ionic transport in the VTF equation and several important parameters in the WLF equation.It is worthwhile to notice that a direct linear relationship between the ionic conductivity and free volume fraction is established using the WLF equation based on the free volume theory for nanocomposite electrolyte,which indicates that the segmental chain migration and ionic migration and diffusion could be explained by the free volume theory.  相似文献   

5.
Reverse Monte Carlo produced structural models of silver ion conducting glasses and crystals have been investigated by the bond-valence technique. Both absolute ionic conductivity and activation energy can be determined directly from the "pathway volume" of the structural models, i.e., from the volume fraction of the percolating pathway cluster. This pathway volume-conductivity relation was found to hold for glassy and crystalline systems with silver ion conductivities differing by more than 11 orders of magnitude. Earlier, less universal rules were rationalized and unified by means of this approach.  相似文献   

6.
The development of nanotechnology in the past two decades has generated great capability of controlling materials at the nanometer scale and has enabled exciting opportunities to design materials with desirable electronic, ionic, photonic, and mechanical properties. This development has also contributed to tile advance in energy storage, which is a critical technology in this century. In this article, we will review how the rational design of nanostructured materials has addressed the challenges of batteries and electrochemical capacitors and led to high-performance electrochemical energy storage devices. Four specific material systems will be discussed: i) nanostructured alloy anodes for Li-batteries, ii) nanostructured sulfur cathodes for Li-batteries, iii) nanoporous open- framework battery electrodes, and iv) nanostructured electrodes for electrochemical capacitors.  相似文献   

7.
Lithium stannate (Li2SnO3) has been prepared by solution evaporation method. The precursor obtained is sintered at 800°C for 5, 6, and 7?h, respectively. X-ray diffractogram confirmed that the sample obtained after sintering is Li2SnO3. The pelletized Li2SnO3 after heating at 500?°C for 3?h is used for electrochemical impedance spectroscopy characterization. Impedance measurements have been carried out over frequency range from 50?Hz to 1?MHz and temperature range from 563 to 633?K. The conductivity?Ctemperature relationship is Arrhenian. Several important parameters such as activation energy, ionic hopping frequency and its rate, carrier concentration term, mobile ion number density, ionic mobility, and diffusion coefficient have been determined. The characteristics of log conductivity and log ionic hopping rate against temperature for the system suggest that the conduction and ionic hopping processes are thermally activated. The values of activation energy for conduction and relaxation processes as well as activation enthalpy for ionic hopping are about the same.  相似文献   

8.
The effect of the different cooling processes on the disorder of flourine ions and ionic conductivity in β-PbF2 has been studied by X-ray method and ionic conductivity measurements on single crystals below the transition temperature Tc. The spike-like diffuse scattering was observed along the <111>1 directions around the Bragg reflections. The activation energies for the conduction process are 0.40 eV for the sample quenched from 970 K and 0.54 eV for the one from 720 K. The higher the quenching temperature is, the higher the conductivity and the lower the activation energy become. The dependence of conductivity on the different cooling processes is more evident in single crystals than in polycrystalline samples. The contribution of the different cooling processes to ionic conductivity can be quantitatively explained by the extent of ordering of mobile fluorine ions. Time dependence of ionic conductivity has not been observed.  相似文献   

9.
The commonly employed adiabatic treatment of polaron hopping is extended to treat the continuous alteration of a carrier wave function with the atoms' movements and a carrier's long-range interaction with a polar surrounding. These features, respectively, introduce carrier-induced softening of the atoms' vibrations and a hopping activation energy that depends on hopping distance. The Meyer-Neldel compensation effect results from carrier-induced softening of vibrations. Poole-Frenkel behavior emerges for electric-field driven polaron hopping in ionic and polar media.  相似文献   

10.
The density functional method with pseudopotentials are used to study the electron states of nanoparticles and nanostructured systems: chains, films, and three-dimensional nanosystems of titanium and zirconia. It is shown that all studied titanium nanosystems have the density of electronic states (DES) of the metallic type, but zirconia nanosystem demonstrates a dielectric energy gap in the vicinity of the Fermi level. The density of states of nanostructured titanium is close in shape to DES of the single crystal but has a smoother shape due to disordering of the atomic arrangement. The forbidden band width of the nanostructured zirconia is smaller as compared to the corresponding width in crystalline ZrO2, supposedly because of incomplete saturation of ionic bonds.  相似文献   

11.
We numerically study the potential energy landscape of a fragile glassy system and find that the dynamic crossover corresponding to the glass transition is actually the effect of an underlying geometric transition caused by the vanishing of the instability index of saddle points of the potential energy. Furthermore, we show that the potential energy barriers connecting local glassy minima increase with decreasing energy of the minima, and we relate this behavior to the fragility of the system. Finally, we analyze the real space structure of activated processes by studying the distribution of particle displacements for local minima connected by simple saddles.  相似文献   

12.
As recently illustrated, nanostructured glassy polymer films with exceptional thermal and kinetic stability can be formed via Matrix Assisted Pulsed Laser Evaporation (MAPLE) (Guo et al. in Nat. Mater. 11:337, 2012). Relative to the standard poly(methyl methacrylate) glass formed on cooling at standard rates, glasses prepared by MAPLE can be 40 % less dense and have a 40 K higher glass transition temperature (T g ). Furthermore, the kinetic stability in the glassy state can be enhanced by 2 orders-of-magnitude. Here, we examine the stability of the structured morphology. We show that nanostructured glasses may be formed even when the substrate is held at temperatures greater than the polymer T g during deposition. In addition, we discuss the origin of the enhanced stability and the mechanism of nanostructured film formation within the framework of the Zhigilei model. Finally, we compare the nanostructured morphology to the surface morphology of other MAPLE-deposited films in the literature.  相似文献   

13.
Using broadband dielectric spectroscopy, we investigated the effect of hydrostatic pressure on the conductivity relaxation time τ{σ} of the supercooled protic ionic liquid, procainamide hydrochloride, a common pharmaceutical. The pressure dependence of τ{σ} exhibited anomalous behavior in the vicinity of the glass transition T{g}, manifested by abrupt changes in activation volume. This peculiar behavior, paralleling the change in temperature dependence of τ{σ} near T{g}, is a manifestation of the decoupling between electrical conductivity and structural relaxation. Although the latter effectively ceases in the glassy state, free ions retain their mobility but with a reduced sensitivity to thermodynamic changes. This is the first observation of decoupling of ion migration from structural relaxation in a glassy conductor by isothermal densification.  相似文献   

14.
Microfuel cells are a possible replacement for batteries as energy sources in portable devices. At PSI a micropolymer electrolyte fuel cell was developed, whose flow fields consist of micro-structured glassy carbon plates. Micro-structuring of glassy carbon is carried out in a multi-step process. A sputtered aluminum mask is selectively removed by single pulse laser ablation from glassy carbon thereby defining micro-channels subsequently etched by reactive ion etching.A pulsed XeCl excimer laser (308 nm) is used for the single pulse patterning of a metal mask on the glassy carbon. The influence of the excimer laser typical pulse to pulse energy fluctuations on the micro-structuring process must be known to minimize defects during RIE etching of the micro-channels. To obtain a better understanding of the processes occurring during ablation, ns-shadowgraphy was performed. The formation of a shockwave was observed, followed by a similar but much slower perturbation, and the subsequent release of fragments. The calculated velocities can be correlated with the energy release during ablation. The post-ablation examination of the samples by profilometry, optical microscopy, SEM and EDX is used to measure the amount of removed material, the quality of the aluminum mask edges and aluminum residues on the glassy carbon surface. Such criteria allow us to classify the laser irradiation as a function of laser fluence: no ablation, partial ablation, complete ablation, and over-ablation.  相似文献   

15.
Electrical conductivity measurements have been performed on yttrium-doped zirconia and on YSZ-alumina composites sintered from powders prepared by conventional techniques (commercial powder) or by freeze-drying. The results have been analyzed taking into account the microstructure of the interfaces which were characterized by electron microscopy. The samples sintered from freeze-dried powders show the highest conductivity values and this conductivity decreases in the presence of alumina. The microstructure of these polycrystals is clean, homogeneous with lens-shaped glassy pockets at triple-points and there is no evidence for continuous boundary films. Contrary, the samples prepared and sintered from commercial powders show a poor microstructure and the presence of a glassy film in a large number of grain boundaries. Furthermore, alumina leads to an increase in conductivity, which reaches a maximum at around 2 mol-% alumina. This result may be attributed to the influence of alumina on the viscosity and wetability of the glassy phase. However, all samples show the same grain boundary activation energy. This confirms that the transport mechanism is the same in all cases and that only clean grain boundaries contribute to the transport processes. Paper presented at the 6th Euroconference on Solid State Ionics, Cetraro, Calabria, Italy, Sept. 12–19, 1999.  相似文献   

16.
A. Bunde 《Il Nuovo Cimento D》1994,16(8):1053-1063
Summary We discuss the dynamic structure model recently introduced by Bunde, Maass and Ingram to account for the anomalies of ionic transport in glassy ionic conductors. The model is based on the experimental evidence that ions in glass maintain their distinct local environments. Key features include a site memory effect that introduces vacancies appropriate to each kind of mobile ion, and a mismatch energy that emerges whenever an ion attempts to enter a different kind of site, the combination of both leads to the formation of fluctuating percolation pathways. The connectivity of these pathways determines the ion mobility in the glassy network. The exploration of this model by numerical methods leads i) to a power law relationship between ionic conductivity and cation content (now confirmed in the literature) and ii) to the elucidation of many facets of the mixed alkali effect. It is suggested that the model could form the basis for a comprehensive theory of vitreous electrolytes. Paper presented at the I International Conference on Scaling Concepts and Complex Fluids, Copanello, Italy, July 4–8, 1994.  相似文献   

17.
The electron-density functional method (in the gradient approximation) and the pseudopotential method are used to study the mechanism of ionic conductivity in the cubic phase of zirconia stabilized with magnesium or yttrium. The oxygen-ion migration in the stabilized zirconia is shown to be a two-stage process, which consists in the formation of active oxygen vacancies and in oxygen-ion jumps from one active vacancy to another. The total activation energy of these processes is calculated to be 1.0–1.5 eV, which agrees with experimental data.  相似文献   

18.
《Nuclear Physics A》1998,633(2):391-405
We investigate the problem of defects in the crust of a neutron star and their possible astrophysical consequences. We consider point defects (impurities, lattice vacancies) and microcrystalline structures resulting from non-equilibrium processes (nuclear condensation, ionic migration, crystallization, etc.) as well as from equilibrium configurations at finite temperature. Our findings suggest that the presence of impurities is likely while vacancies, microcrystals or a glassy state are probably absent.  相似文献   

19.
Processes of ballistic and hot electron relaxation in extended bulk as well as nanostructured silica have been analyzed by means of a phonon-based scattering model and respective Monte-Carlo computer simulation. Optical as well as acoustic phonons are taken into account. Trajectories of electrons and their energy attenuation in nanostructured silica are additionally affected by scattering processes at the grain boundaries between the nanoparticles, i.e. by surface phonon as well as potential scattering. Moreover, a flatter conduction band and a higher effective electron mass have been taken into account too. According to these calculations, electrons with an initial energy of several eV, but still below the valence band ionization threshold, were thermalized in 50–300 fs increasing with the silica grain size from 1 nm up to bulk material. The electron emission probabilities over the surface barrier into vacuum are extended up to depths of 60–100 nm, respectively, increasing with enhancement by an electric field.  相似文献   

20.
The activation-relaxation technique (ART), a saddle-point search method, is applied to determine the potential energy landscape around supercooled and glassy configurations of a three-dimensional binary Lennard-Jones system. We show a strong relation between the distribution of activation energies around a given glassy configuration and its history, in particular, the cooling rate used to produce the glass and whether or not the glass was plastically deformed prior to sampling. We also compare the thermally activated transitions found by ART around a supercooled configuration with the succession of transitions undergone by the same supercooled liquid during a time trajectory simulated by molecular dynamics. We find that ART is biased towards more heterogeneous transitions with higher activation energies and more broken bonds than the MD simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号