首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the conditions resulting in maximum lowering of the excitation threshold for pulsed stimulated Raman (SRS) lasers. It has been shown theoretically that in order to achieve the lowest possible values of laser radiation pulse energy needed to excite lasing in SRS lasers, we need high reflection of the cavity mirrors and low losses at the wavelength of the 1st Stokes component, high reflection of the output mirror at the wavelength of the pump radiation, and also matching of the confocal parameters for the exciting laser radiation and the cavity with each other and with the length of the Raman-active medium. The experimentally achieved excitation threshold for an SRS laser based on a barium nitrate crystal was 6 μJ, which quantitatively corresponds well to the calculation results. Lasing of up to five Stokes components simultaneously occurred. The efficiency for conversion of the laser radiation to one component was as high as 39%. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 2, pp. 284–290, March–April, 2008.  相似文献   

2.
Bai XuYongda Li  Lijun Song 《Optik》2012,123(23):2183-2186
One-dimensional particle-in-cell (PIC) program is used to simulate the generation of high power terahertz (THz) emission from the interaction of an ultrashort intense laser pulse with underdense plasma. The spectra of THz radiation are discussed under different laser intensity, pulse width, incident angle and density scale length. High-amplitude electron plasma wave driven by a laser wakefield can produce powerful THz emission through linear mode conversion under certain conditions. With incident laser intensity of 1018 W/cm2, the generated emission is computed to be of the order of several MV/cm field and tens of MW level power. The corresponding energy conversion efficiency is several ten thousandths, which is higher then the efficiency of other THz source and suitable for the studies of THz nonlinear physics.  相似文献   

3.
强太赫兹源是太赫兹科学技术发展的关键,其中大能量强场太赫兹脉冲源在超快物态调控、新型电子加速器等领域具有重要的应用前景.超快超强激光与等离子体相互作用是近年来发展起来的一种新型的强场太赫兹辐射产生途径.本文报道了利用超强飞秒激光脉冲与金属薄膜靶作用产生太赫兹辐射的实验结果,研究了激光能量和离焦量对靶后太赫兹辐射能量的影响,并通过监测激光背向散射光谱,定性揭示了其变化规律与不同光强下的电子加热机制的相关性.实验表征了太赫兹辐射的频谱、偏振及聚焦光斑情况.测量结果表明,实验产生了脉冲能量达458μJ、聚焦场强高达GV/m量级的超宽带太赫兹辐射,为开展极端太赫兹脉冲与物质相互作用研究提供了一种新的强场太赫兹光源.  相似文献   

4.
The action of powerful pulsed picosecond radiation from a Nd: YAG laser (λ=530 nm, pulse energy: 0.01 J, intensity: 2GW/cm2) and an argon laser (λ=515 nm, power: 50 mW) on protoporphyrin-IX dimethylether in three solvents (trichlormethane, carbon tetrachloride, dioxane) has been studied. Under continuous irradiation the quantum yield and resulting products do not differ materially from the ones produced under mercury lamp irradiation. When irradiation is performed by powerful laser pulses of picosecond duration the quantum yield of photodecomposition of protoporphyrin-IX dimethylether inereases substantially: by 10 in dioxane, by 4 in carbon tetrachloride and by 100 in trichlormethane. It is assumed that a quite different mechanism of multistep excitation is responsible for photodecomposition under powerful picosecond pulses.  相似文献   

5.
M. B. Smirnov 《Laser Physics》2010,20(5):1009-1018
X-ray radiation is studied for large clusters consisting of 107–1010 atoms and irradiated by an intense laser pulse with an intensity ranged from (1014 up to 1018 W/cm2). The model is developed for such a laser plasma that includes the radiative transitions and the processes of excitation and quenching of multicharged ions of this plasma by electron impact. Due to interaction of a radiating multicharged ion with a surrounding plasma, spectral lines of emission are broaden and neighboring spectral lines are overlapped. As a result, the spectrum of radiation of multicharged ions is transformed into a continuous spectral band. The model under consideration includes important plasma processes including dielectronic recombination, spontaneous radiation, excitation, quenching and ionization of multicharged ions by electron impact. On the basis of the model developed the X-ray spectrum and spectral power are evaluated. In the range of laser intensities under consideration a laser plasma formed contains multicharged ions with charges Z = 26?36 that corresponds to the 3d-electron shell in the xenon case.  相似文献   

6.
The potential for nonlinear conversion between two laser pulses in a three-level V-type medium with assistance of an auxiliary microwave resonant radiation is studied. The results show that microwave driven field can lead to the parametric generation of a new laser pulse with high conversion efficiency when a weak pump laser pulse is applied.  相似文献   

7.
The design of the generator of picosecond laser pulses and the results on semiconductor target (ZnSe, CdS, and others) excitation by electric field and electron beam pulses are presented. The maximum power of laser radiation reached 10 kW at pulse durations of 100–200 ps.  相似文献   

8.
The spectra of two-photon-excited fluorescence in KTiOPO4 were obtained at room temperature. A coppervapor laser was used as a source of excitation light and provided two emission lines (λ=510.6 and 578.2 nm). The laser operated at a high pulse-repetition rate (~ 104 Hz) and featured a peak power of about 104 W, average power of 1 W, and pulse duration of 20 ns. The fluorescence spectra of crystalline KTiOPO4 are compared with the resonance fluorescence spectra of KTiOPO4 at 4.2 K. The measured decay time of fluorescence was found to be less than 16 ns. The efficiency of conversion of the laser radiation to fluorescence was about 10?10 under saturation conditions.  相似文献   

9.
Peculiarities of internal optical field resonant excitation inside micron-sized spherical transparent dielectric cavity illuminated by a train of ultrashort laser pulses are investigated. On an example of water microdroplet is shown that optimal tuning of incident radiation to a selected high-Q resonance electromagnetic cavity mode can be realized by varying temporal interpulse interval in a laser train together with linear frequency modulation of every pulse (chirp). Efficiency of resonant particle excitation by a chirped picosecond pulses train can be considerably increased as compared to unchirped pulse train and CW excitation also.  相似文献   

10.
A strong effect of radiation damping on the interaction of an ultraintense laser pulse with an overdense plasma slab is found and studied via a relativistic particle-in-cell simulation including ionization. Hot electrons generated by the irradiation of a laser pulse with a radiance of I lambda(2)>10(22) W microm(2)/cm(2) and duration of 20 fs can convert more than 35% of the laser energy to radiation. This incoherent x-ray emission lasts for only the pulse duration and can be intense. The radiation efficiency is shown to increase nonlinearly with laser intensity. Similar to cyclotron radiation, the radiation damping may restrain the maximal energy of relativistic electrons in ultraintense-laser-produced plasmas.  相似文献   

11.
The possibility of applying the physical principles underlying the operation of a solid-state terahertz oscillator to plasma gas-discharge media is analyzed. A new method of electromagnetic wave generation in the terahertz frequency range is proposed. It is based on the excitation of plasma-oscillation current by a static electric field in a laser spark produced by an axicon lens, followed by the radiation of an electromagnetic pulse through the Cherenkov mechanism.  相似文献   

12.
The dynamics of absorption after excitation of fused silica and BK7 glass with femtosecond laser radiation are visualized by transient absorption spectroscopy. Focusing laser radiation with pulse durations in the picosecond time regime in BK7 glass generates free electrons with relaxation by emission of radiation or by formation of defects. The temporal and spatial emission characteristics are observed by high-speed photography in the streak mode. The beam waist moves within the pulse duration towards the incoming laser radiation by self-focusing and with the laser radiation absorbed by multi-photon processes. The dynamics of the long lasting stress formation is visualized by time-resolved Nomarski-Photography. The modification of the glass is investigated during and after irradiation with ultra-short pulsed laser radiation (100 fs<tp<3 ps) at the wavelength =810 nm. The formation of a sound wave in fused silica and BK7 glass is observed and the mechanical stress, depending on the excitation pulse duration, is measured. PACS 06.60.Jn; 42.50.Md; 78.47.-p; 81.16.-c; 82.53.-k  相似文献   

13.
The energies of a shock wave generated in different metals under irradiation by a high-power laser beam were determined experimentally. The experiments were performed with the use of targets prepared from a number of metals, such as aluminum, copper, silver and lead (which belong to different periods of the periodic table) under irradiation by pulses of the first and third harmonics of the PALS iodine laser at a radiation intensity of approximately 1014 W/cm2. It was found that, for heavy metals, like for light solid materials, the fraction of laser radiation energy converted into the energy of a shock wave under irradiation by a laser pulse of the third harmonic considerably (by a factor of 2–3) exceeds the fraction of laser radiation energy converted under irradiation by a laser pulse of the first harmonic. The influence of radiation processes on the efficiency of conversion of the laser energy into the energy of the shock wave was analyzed.  相似文献   

14.
We have observed and characterized 501.6 nm collective spontaneous emission (superfluorescence) following 1s(2) → 1s3p excitation of helium atoms by 53.7 nm free-electron laser radiation. Emitted pulse energies of up to 100 nJ are observed, corresponding to a photon number conversion efficiency of up to 10%. We observe the peak intensity to scale as ρ(2) and the emitted pulse width and delay to scale as ρ(-1), where ρ is the atom number density. Emitted pulses as short as 1 ps are observed, which corresponds to a rate around 75,000 times faster than the spontaneous 1s3p → 1s2s decay rate. To our knowledge, this is the first observation of superfluorescence following pumping in the extreme ultraviolet wavelength region, and extension of the technique to the generation of extreme ultraviolet and x-ray superfluorescence pulses should be straightforward by using suitable atomic systems and pump wavelengths.  相似文献   

15.
The features of excitation of a hydrogen atom by ultrashort laser pulses (USP ) with a Gaussian envelope in optically dense plasma at a Lyman‐beta transition are studied theoretically. The problem is of interest for diagnostics of optically dense media. USP have two doubtless advantages over conventional laser excitation: (a) the USP carrier frequency is shifted to the region of short wavelengths allowing exciting atoms from the ground state and (b) the wide spectrum of USP allows them to penetrate into optically dense media to much longer distances as compared with monochromatic radiation. As actual realistic cases, two examples are considered: hot rarefied plasma (the coronal limit) and dense cold plasma (the Boltzmann equilibrium). Universal expressions for the total probability of excitation of the transition under consideration are obtained in view of absorption of radiation in a medium. As initial data for the spectral form of a line, the results of calculations by methods of molecular dynamics are used. The probability of excitation of an atom is analysed for different values of problem parameters: the pulse duration, the optical thickness of a medium, and the detuning of the pulse carrier frequency from the eigenfrequency of an electron transition.  相似文献   

16.
It is proposed to use a high rate of collisional ionization in a superdense laser plasma to generate incoherent femtosecond X-ray pulses. The calculations indicate that the use of picosecond laser pulses with a contrast of about 1010 will allow the generation of an X-ray pulse with a duration of about 10 fs. The adequacy of the proposed model of the excitation of linear X-ray radiation from the plasma has been tested in the experiments with a picosecond laser of a moderately high contrast.  相似文献   

17.
In this investigation, we used high-speed shadow photography to observe fast optodynamic phenomena such as shock waves and the ablation of flat metal surfaces. These phenomena were induced in air by a Q-switched Nd:YAG laser (λ = 1,064 nm) with a pulse duration of 4 ns and an excitation pulse energy between 10 and 55 mJ. For a good spatial resolution of the shadowgraphs, we used short illumination pulses (30 ps) from a frequency-doubled Nd:YAG laser (λ = 532 nm). Using the shadowgraphs of the shock wave expansion into a half-space, we measured the optodynamic energy conversion efficiency, defined as the ratio between the mechanical energy of the shock wave and the excitation pulse energy. This efficiency increases with an increasing excitation pulse energy. We also present the characteristic shadowgraphs of the ablation of a black-painted metal surface, where the macroscopic material particles are clearly visible. They follow the shock wave and eventually overtake it. As a result, the shape of the shock wave, which normally expands concentrically into the half-space, has an altered form. The presented results reveal the phenomenon of the laser ablation of coated metal surfaces.  相似文献   

18.
We discuss the role of different factors (molecular sizes and configuration, orientation of the molecular axis with respect to the electric field of a laser pulse, the type of the molecular orbital, etc.), which characterize molecules and their state, in the formation of the nonlinear response of a molecule ionized by a high-power femtosecond laser pulse. In numerical experiments within the framework of a two-dimensional model for the H 2 + molecular ion, we study possibilities for controlling the process of nonlinear frequency conversion of femtosecond optical radiation into X-ray radiation of attosecond duration by means of preliminary vibrational or electronic excitation of molecules. We demonstrate the possibilities of using the attosecond pulse generation as a diagnostic tool for probing vibration-rotational dynamics of molecules.  相似文献   

19.
Two-dimensional “halo” superradiance and laser operation has been induced in Rhodamin 6G dye by picosecond pulse excitation. At single pulse excitation under special pumping conditions a 30 ps merging superradiation propagating simultaneously in every direction of the plane was observed. In the case of pulse train excitation, contrary to the general observations made on conventional “one-dimensional” lasers, the duration of the thus obtained laser radiation was found to be longer by two orders of magnitude than of the excitation and to increase from pulse to pulse in the train.  相似文献   

20.
The generation of lower (third) and higher harmonics of femtosecond laser radiation in plasmas produced by laser ablation of different targets with a small atomic number Z (B, Be, Li) has been investigated. The high (10−3) efficiency of third-harmonic generation was observed in plasma produced on the boron surface. Efficient third-harmonic generation was also observed in beryllium plasma using femtosecond pulses of Ti:sapphire laser radiation (λ = 790 nm) and its second harmonic (395 nm). We could tune the higher harmonics generation spectrum by tuning the crystal converter when using 395-nm radiation to be converted. It is shown that, in plasmas formed on targets with small Z, the conversion efficiency and limiting generated harmonic order depend on the delay between the ablation pulse and the pulse to be converted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号