首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B. C. Allanach 《Pramana》2003,60(2):239-247
The large hadron collider (LHC) should have the ability to detect supersymmetric particles if low-energy supersymmetry solves the hierarchy problem. Studies of the LHC detection reach, and the ability to measure properties of supersymmetric particles are currently underway. We highlight some of these, such as the reach in minimal supergravity space and correlation with a fine-tuning parameter, precision measurements of edge variables, anomaly or gauge-mediated supersymmetry breaking. Supersymmetry with baryon-number violation seems at first glance more difficult to detect, but proves to be possible by using leptons from cascade decays.  相似文献   

2.
The Large Hadron Collider (LHC) offers unprecedented opportunities to study in detail interactions in the unexplored energy range around 1 TeV, where new physical phenomena undoubtedly exist. The luminosity expected in the first year of LHC operation will make it possible to thoroughly tune and calibrate physical facilities, clear up characteristics of the main, most intense processes, and search for new entities, such as the Higgs boson, light supersymmetric particles, and new heavy gauge bosons, with a sensitivity high enough to allow their observation.  相似文献   

3.
4.
We present the next-to-leading order (NLO) QCD results for W+4-jet production at hadron colliders. This is the first hadron-collider process with five final-state objects to be computed at NLO. It represents an important background to many searches for new physics at the energy frontier. Total cross sections, as well as distributions in the jet transverse momenta, are provided for the initial LHC energy of √s = 7 TeV. We use a leading-color approximation, known to be accurate to 3% for W production with fewer jets. The calculation uses the BLACKHAT library along with the SHERPA package.  相似文献   

5.
Identified π±,K ±, p and -p transverse momentum spectra at mid-rapidity in √sNN = 130 GeV Au-Au collisions were measured by the PHENIX experiment at RHIC as a function of collision centrality. Average transverse momenta increase with the number of participating nucleonsN part similarly for all particle species. The multiplicity densities scale faster thanN part. TheK ± andp ±yields per participant increase faster than the π± yields. We combine the PHENIX neutral and charged pion measurement and find that in central collisions forp T >-2 GeV/c,-p andp yields are comparable to or even exceed the pion yields.  相似文献   

6.
We present total rates and kinematic distributions for the associated production of a single bottom quark and a Higgs boson at the Fermilab Tevatron and CERN Large Hardon Collider. We include next-to-leading order QCD corrections and compare the results obtained in the four and five flavor number schemes for parton distribution functions.  相似文献   

7.
This note summarizes many detailed physics studies done by the ATLAS and CMS Collaborations for the LHC, concentrating on processes involving the production of high mass states. These studies show that the LHC should be able to elucidate the mechanism of electroweak symmetry breaking and to study a variety of other topics related to physics at the TeV scale. In particular, a Higgs boson with couplings given by the Standard Model is observable in several channels over the full range of allowed masses. Its mass and some of its couplings will be determined. If supersymmetry is relevant to electroweak interactions, it will be discovered and the properties of many supersymmetric particles elucidated. Other new physics, such as the existence of massive gauge bosons and extra dimensions can be searched for extending existing limits by an order of magnitude or more.  相似文献   

8.
9.
The state of the art of a tracking detector and calorimeter electronics that are being developed for experiments at the Large Hadron Collider (LHC) is discussed. Construction of the detectors is briefly described. The problems of fabrication of integrated circuits based on a radiation-resistant technology are considered, as well as the solution to the problem of microconnections between sensitive elements and readout amplifiers in two-coordinate semiconductor detectors. The parameters and block diagrams of both analog and digital integrated circuits are given; these circuits are used for amplifying and shaping the signals measured by tracking detectors of elementary particles and calorimeters. The contributions of Russian experimenters and physicists of the Joint Institute for Nuclear Research to the development of detector electronics for experiments at the LHC is described.  相似文献   

10.
We explore possible signatures for right-handed neutrinos in a TeV scale B-L extension of the standard model at the Large Hadron Collider. The studied four lepton signal has a tiny standard model background. We find the signal experimentally accessible at the LHC for the considered parameter regions.  相似文献   

11.
Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.  相似文献   

12.
We investigate the viability of observing charged Higgs bosons () produced in association with bosons at the CERN large hadron collider, using the leptonic decay and hadronic decay, within different scenarios of the minimal supersymmetric standard model (MSSM) with both real and complex parameters. Performing a parton level study we show how the irreducible standard model background from jets can be controlled by applying appropriate cuts and find that the size of a possible signal depends on the cuts needed to suppress QCD backgrounds and misidentifications. In the standard maximal mixing scenario of the MSSM we find a viable signal for large and intermediate masses () when using softer cuts (,  50 GeV), whereas for harder cuts (, 100 GeV) we only find a viable signal for very large (). We have also investigated a special class of MSSM scenarios with large mass splittings among the heavy Higgs bosons where the cross-section can be resonantly enhanced by factors up to one hundred, with a strong dependence on the -violating phases. Even so we find that the signal after cuts remains small except for small masses () when using the softer cuts. Finally, in all the scenarios we have investigated we have only found small -asymmetries.  相似文献   

13.
It is argued that the mean multiplicities in a deep-inelastic process that are measured at the HERA collider grow with increasing photon virtuality at a fixed invariant mass of final hadron states. This is yet another piece of experimental evidence in favor of the qualitative hypothesis put forth by C.N. Yang and his colleagues and of the quantitative predictions obtained by the present authors on the basis of QCD.  相似文献   

14.
We present predictions for the pseudorapidity density of charged particles produced in central Pb-Pb collisions at the LHC. Particle production in such collisions is calculated in the framework of k(t) factorization. The nuclear unintegrated gluon distributions at LHC energies are determined from numerical solutions of the Balitsky-Kovchegov equation including recently calculated running coupling corrections. The initial conditions for the evolution are fixed by fitting Relativistic Heavy Ion Collider data at collision energies square root[sNN]=130 and 200 GeV per nucleon. We obtain dNch(Pb-Pb)/deta(square root[sNN]=5.5 TeV)/eta=0 approximately 1290-1480.  相似文献   

15.
The experiments at the large hadron collider (LHC) will probe for Higgs boson in the mass range between the lower bound on the Higgs mass set by the experiments at the large electron positron collider (LEP) and the unitarity bound (∼1 TeV). Strategies are being developed to look for signatures of Higgs boson and measure its properties. In this paper results from full detector simulation-based studies on Higgs discovery from both ATLAS and CMS experiments at the LHC will be presented. Results of simulation studies on Higgs coupling measurement at LHC will be discussed. on behalf of the CMS and the ATLAS Collaborations  相似文献   

16.
We demonstrate the QCD factorization for inclusive hadron production in p-A collisions in the saturation formalism at one-loop order, with explicit calculation of both real and virtual gluon radiation diagrams. In particular, we find that the cross section can be written into a factorization form in the coordinate space at the next-to-leading order, while the naive form of the convolution in the transverse momentum space does not hold. The collinear divergences associated with the incoming parton distribution of the nucleon and the outgoing fragmentation function of the final-state hadron, as well as the rapidity divergence with small-x dipole gluon distribution of the nucleus are factorized into the splittings of the associated parton distribution and fragmentation functions and the energy evolution of the dipole gluon distribution function. The hard coefficient function is evaluated at one-loop order, and contains no divergence.  相似文献   

17.
18.
In this note, we summarize and compare various model predictions forpp total cross-section σ tot pp , giving an estimate of the range of predictions for the total cross-section, σ tot pp expected at the LHC. We concentrate on the results for σ tot pp obtained in a particular QCD based model of the energy dependence of the total cross-section, including the effect of soft gluon radiation. We obtain the range of predictions in this model by exploring the allowed range of model parameters. We further give a handy parametrisation of these results which incidentally spans the range of various other available predictions at the LHC as well  相似文献   

19.
20.
The large hadron collider (LHC) under construction at CERN will deliver ion beams up to centre of mass energies of the order of 5.5 TeV per nucleon, in case of lead. If compared to the available facilities for the study of nucleus-nucleus collisions (SpS and RHIC), this represents a huge step forward in terms of both volume and energy density that can be attained in nuclear interactions. ALICE (a large ion collider experiment) is the only detector specifically designed for the physics of nuclear collisions at LHC, even though it can also study high cross-section processes occurring in proton-proton collisions. The main goal of the experiment is to observe and study the phase transition from hadronic matter to deconfined partonic matter (quark gluon plasma —QGP). ALICE is conceived as a general-purpose detector and will address most of the phenomena related to the QGP formation at LHC energies: for this purpose, a large fraction of the hadrons, leptons and photons produced in each interaction will be measured and identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号