首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
We report optical double resonant enhancement of Raman scattering in a new double microcavity geometry. The design allows almost backscattering geometries, providing easy access to the excitations' in-plane dispersion. The cavity is used to study the phonon spectra of a finite GaAs/AlAs superlattice. A new type of "standing optical vibration" is demonstrated involving the GaAs confined phonons with a standing wave envelope determined by the superlattice thickness. A strong dispersion of the first order standing wave mode is observed, as well as its anticrossing with higher order confined modes of the same symmetry.  相似文献   

2.
Photonic moiré superlattice as an emerging platform of flatbands can tightly confine the light inside the cavity and has important applications not only in linear optics but also in nonlinear optics. In this paper, we numerically investigate the third- and fifth-order harmonic generation (THG and FHG) in photonic moiré superlattices fabricated by the nonlinear material silicon. The high conversion efficiency of THG and FHG is obtained at a relatively low intensity of fundamental light, e.g., the maximum conversion efficiency of THG and FHG arrives even up to be 10−2 and 10−9 at the fundamental intensity of 30 kW/m2, respectively, in the moiré superlattice of near flat band formed by the twist angle 6.01°. The results indicate the photonic moiré superlattice of a high-quality factor and flatbands is a promising platform for efficient nonlinear processes and advanced photonic devices.  相似文献   

3.
Quantum electrodynamical density functional theory is applied to obtain the electronic density, spin polarization, as well as orbital and spin magnetizations of square periodic arrays of quantum dots or antidots subjected to the influence of a far-infrared cavity photon field. A gradient-based exchange-correlation functional adapted to a 2D electron gas in a transverse homogeneous magnetic field is used in the theoretical framework and calculations. The obtained results predict a non-trivial effect of the cavity field on the electron distribution in the unit cell of the superlattice, as well as on the orbital and spin magnetizations. The number of electrons per unit cell of the superlattice is shown to play a crucial role in the modification of the magnetization via the electron–photon coupling. The calculations show that cavity photons strengthen the diamagnetic effect in the quantum dot structure, while they weaken the paramagnetic effect in the antidot structure. As the number of electrons per unit cell of the lattice increases, the electron–photon interaction reduces the exchange forces that will otherwise promote strong spin splitting for both the dot and the antidot arrays.  相似文献   

4.
Quantum cascade lasers are semiconductor devices based on the interplay of perpendicular transport through the heterostructure and the intracavity lasing field. We employ femtosecond time-resolved pump-probe measurements to investigate the nature of the transport through the laser structure via the dynamics of the gain. The gain recovery is determined by the time-dependent transport of electrons through both the active regions and the superlattice regions connecting them. As the laser approaches and exceeds threshold, the component of the gain recovery due to the nonzero lifetime of the upper lasing state in the active region shows a dramatic reduction due to the onset of quantum stimulated emission; the drift of the electrons is thus driven by the cavity photon density. The gain recovery is qualitatively different from that in conventional lasers due to the superlattice transport in the cascade.  相似文献   

5.
赵国忠  潘少华 《物理学报》1996,45(6):929-939
运用Kronig-Penney(KP)模型的新形式,研究半导体超晶格中子带间跃迁的光学双稳特性。由二子能带模型密度矩阵方法,导出了子带间光跃迁的Maxwell-Bloch(MB)方程。从MB方程的定态解出发,得到了环形腔中超晶格子带间跃迁的光学双稳态方程,进而讨论了这种光学双稳的特点以及实现的条件。 关键词:  相似文献   

6.
We report on a microwave oscillator based on Bloch oscillations of electrons in a semiconductor superlattice. Our GaAs/AlAs superlattice, at room temperature, was coupled electromagnetically by an antenna to a rectangular cavity resonator, and was operated at a current-voltage state of negative differential conductance. We observed generation of microwave radiation at frequencies, depending on the resonator length, between 7 and 30 GHz. Electronic tuning by several percent was possible; the ratio of linewidth to frequency was of the order of 10?4. A radiation power up to 1 μW (at 10 GHz) was obtained, corresponding to a generator efficiency of the order of 10?3 for the conversion of electrical power to microwave radiation.  相似文献   

7.
Tu  X.  Zuo  Y.  Chen  S.  Zhao  L.  Yu  J.  Wang  Q. 《Laser Physics》2008,18(4):438-441

An optical modulator is designed and fabricated based on a Si0.75Ge0.25/Si/Si0.5Ge0.5 asymmetrical superlattice structure. The device comprises a p-i-n diode made on the asymmetrical superlattice integrated with a 920-μm-long Fabry-Perot (F-P) cavity. Parameters of the rib waveguide are designed to satisfy only the fundamental-TE mode transmission. Here, 65 and 40-pm red shifts of the peak resonant were measured under the applied bias of 2.5 and ?32.0 V, respectively. The analysis shows that, besides the thermal-optical and plasma dispersion effects, the Pockels effect also contributes to such a peak shift. The corresponding calculated effective Pockels coefficient is about 0.158 pm/V.

  相似文献   

8.
本文用MOCVD技术在GaAs衬底上成功地制备了具有波导结构的Zn0.8Cd0.2Se-ZnSe应变层超晶格样品,在77K温度的光致发光光谱中观测到n=1的重空穴和轻空穴激子的辐射复合。在光泵浦下,在波导结构的F-P腔中观测到具有多模结构的受激发射,受激发射谱中的不同模具有不同的阈值功率密度;时间延迟衰减曲线的半宽度越窄,阈值光强越大.  相似文献   

9.
This Letter reports physical realization of acoustic metamaterials with anisotropic mass density. These metamaterials consist of a superlattice of two fluidlike components radially periodic. Several structures are spectroscopically characterized at large wavelengths (homogenization limit) by studying the acoustic resonances existing in the circular cavity where they are embedded. This characterization method allows us to extract the diagonal components of the sound speed tensor. Analytical expressions describing the anisotropic behavior as a function of the corrugation parameter are also developed and their predictions are in agreement with measurements.  相似文献   

10.
We demonstrate the existence of Bloch oscillations of acoustic fields in sound propagation through a superlattice of water cavities and layers of methyl methacrylate. To obtain the acoustic equivalent of a Wannier-Stark ladder, we employ a set of cavities with different thicknesses. Bloch oscillations are observed as time-resolved oscillations of transmission in a direct analogy to electronic Bloch oscillations in biased semiconductor superlattices. Moreover, for a particular gradient of cavity thicknesses, an overlap of two acoustic minibands occurs, which results in resonant Zener-like transmission enhancement.  相似文献   

11.
Extending the idea of optical microcavities to sound waves, we propose a phonon cavity consisting of two semiconductor superlattices enclosing a spacer layer. We show that acoustical phonons can be confined in such layered structures when the spacer thickness is an integer multiple of the acoustic half-wavelength at the center of one of the superlattice folded minigaps. We report Raman scattering experiments that, taking profit of an optical microcavity geometry, demonstrate unambiguously the observation of a phonon-cavity confined acoustical vibration in a GaAs/AlAs based structure. The experimental results compare precisely with photoelastic model calculations of the Raman spectra.  相似文献   

12.
采用双水电极介质阻挡放电装置,在氩气/空气混合气体放电中,在三种边界条件下得到了一种新型的超六边形斑图.给出了超六边形斑图的傅里叶变换及其不同模强度随旋转角的变化.实验测量了超六边形斑图随空气含量和外加电压变化的相图.研究了超六边形斑图的时空动力学,发现超六边形斑图是由两套子结构嵌套而成.在四边形边界条件下,研究了放电面积的大小对斑图模式选择的影响.发现超四边形斑图的形成受边界条件影响很大,而超六边形斑图则是自组织的结果. 关键词: 介质阻挡放电 超六边形斑图 时空动力学 边界条件  相似文献   

13.
The semiclassical motion of an electron along the axis of a superlattice may be calculated from the miniband dispersion curve. Under a weak electric field the electron executes Bloch oscillations which confines the motion along the superlattice axis. When a magnetic field, tilted with respect to the superlattice axis, is applied the electron orbits become chaotic. The onset of chaos is characterised by a complex mixed stable-chaotic phase space and an extension of the orbital trajectories along the superlattice axis. This delocalisation of the orbits is also reflected in the quantum eigenstates of the system some of which show well-defined patterns of high probability density whose shapes resemble certain semiclassical orbits. This suggests that the onset of chaos will be manifest in electron transport through a finite superlattice. We also propose that these phenomena may be observable in the motion of trapped ultra-cold atoms in an optically induced superlattice potential and magnetic quadrupole potential whose axis is tilted relative to the superlattice axis.  相似文献   

14.
We present an approach to generating a tunable orange laser from 0.601 to 0.604 μm based on a quasi-periodically poled superlattice in LiTaO3 and a Q-switched 1.064 μm Nd:YVO4 laser as pump. The orange laser was generated in a cavity by a parametric process cascaded by a frequency mixing with a maximum output of 310 mW using 15 W pump power.  相似文献   

15.
AlN/GaN superlattice buffer is inserted between GaN epitaxial layer and Si substrate before epitaxial growth of GaN layer. High-quality and crack-free GaN epitaxial layers can be obtained by inserting AlN/GaN superlattice buffer layer. The influence of AlN/GaN superlattice buffer layer on the properties of GaN films are investigated in this paper. One of the important roles of the superlattice is to release tensile strain between Si substrate and epilayer. Raman spectra show a substantial decrease of in-plane tensile strain in GaN layers by using AlN/GaN superlattice buffer layer. Moreover, TEM cross-sectional images show that the densities of both screw and edge dislocations are significantly reduced. The GaN films grown on Si with the superlattice buffer also have better surface morphology and optical properties.  相似文献   

16.
A calculation of relaxation time for (i) electron–electron scattering in a modulation-doped superlattice of type-I and (ii) electron–electron, hole–hole and electron–hole scattering processes in a compositional superlattice of type-II has been performed, using Fermi's golden rule. As compared to a two-dimensional electron gas system, both intralayer and interlayer interactions, between charge carriers in a superlattice, contribute to relaxation time. It is found that scattering processes at all possible value of momentum transfer contribute to relaxation time, for a given value of temperature and carrier density. We further find interlayer interactions in a superlattice make a significant contribution to relaxation time. Relaxation time is found to decrease on increasing temperature, carrier density and single particle energy, in a superlattice. The computed relaxation time for an electron (hole) in a superlattice enhances on increasing the width of layer consisting of electrons (holes). The electron–hole (hole–electron) scattering process in a type-II superlattice yields maximum contribution to the relaxation time when a hole layer lies exactly in between two consecutive electron layers.  相似文献   

17.
本文应用X射线在畸变晶体中的动力学衍射理论,分析了超晶格衍射峰强度分布的规律,计算了应变超晶格中界面变化,层厚波动对双晶摇摆曲线的影响,并初步探讨了超晶格衍射峰之间的小峰消失以及衍射峰宽化的原因,研究表明,衍射峰强度分布依赖于超晶格周期中层厚、成份及应变的综合效果,界面和层厚波动将对摇摆曲线产生一定影响,而晶格弯曲是使衍射峰宽化的主要原因。  相似文献   

18.
A well defined collective plasma resonance corresponding to electrons tunneling back and forth through superlattice barriers is observed in a series of modulation doped AlGaAs heterostructures containing a superlattice within a parabolic potential. Due to occupation of a large fraction of the miniband, the resonance frequency decreases strongly with increasing superlattice barrier thickness.  相似文献   

19.
In this paper, we present a range of modeling tools that are used in the design and performance evaluation of type-II superlattice detectors. Among these is an optical and photo carrier transport model for the spectral total external QE, which takes into account carrier diffusion length. Using this model, the diffusion length is extracted from external quantum efficiency measurements. It can also be used to fine-tune an optical cavity in relation to the wavelength range of interest for optimal quantum efficiency. Furthermore, an electrical device model for band bending, dark current and doping optimization is described. The modeling tools are discussed and examples of their use are given for MWIR type-II detectors based on InAs/AlSb/GaSb superlattices.  相似文献   

20.
The photo-induced dynamics of cold atoms in a one-dimensional optical superlattice is observed. Steady state distribution of the probability amplitudes and the site population in a one-dimensional optical superlattice is found. It is shown that this solution of the equations, which describes the temporal behavior of a Bose-Einstein condensate in a superlattice, is unstable at the sufficiently high level of boson density. The expression for the increment of modulational instability is obtained on the basis of the linear stability analysis. The numerical examples of non-stationary solutions for boson density in a superlattice for the general model are discussed as applied to both the attraction and repulsion potentials of boson interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号