首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improving the property of ZnO nanorods using hydrogen peroxide solution   总被引:1,自引:0,他引:1  
Zinc oxide (ZnO) nanorod arrays made by the hydrothermal method were treated with hydrogen peroxide (H2O2) solution through two different approaches. One is to immerse ZnO nanorod sample into H2O2 solution. The other is a pre-treatment of spin-coating H2O2 solution on the seed layer before the growth of the ZnO nanorods. In the first approach, we found that the ultraviolet (UV) emission peak of the ZnO nanorod photoluminescence (PL) spectra was strongly dependent on the immersion time. In the second approach, the H2O2 solution influences not only the quality of the seed layer, but also the amount of the oxygen interstitial defects in the ZnO nanorods grown thereon. As a result, the UV emission intensity from the ZnO nanorods is enhanced almost five times. The ZnO nanorod arrays with few oxygen interstitial defects are prepared by the hydrogen peroxide treatment and expected to enable the fabrication of optoelectronic device with excellent performance.  相似文献   

2.
Study of the ZnO crystal growth by vapour transport methods   总被引:5,自引:0,他引:5  
The crystal growth of ZnO by vapour transport is classically made with the assistance of additional species that produce a gaseous mixture, the role of which remains often uncertain in the transport and growth process. Initially, in order to study the mass transport process, a numerical simulation is made to analyse which are the requirements to have an effective transport. As the pressure of each gaseous species is generally unknown, the numerical study has been performed for different total pressures. It is found that, if congruent and equilibrium conditions are assumed at the sublimation and crystallisation interfaces, effective growth conditions can only be attained for a narrow range of total pressures. Nevertheless, it is well known that ZnO growth by vapour transport is possible for a wide range of pressures of gaseous species. As a consequence, partial pressures higher than the equilibrium ones must be present in order to justify the experimental results. We suggest that the thermal decomposition of ZnO is given by an activated process. The analysis of different mechanisms that could justify the activated decomposition, in accord with a systematic set of growth experiments, suggests that some additional species in the growth of ZnO by vapour transport promote the generation of an additional Zn pressure. This zinc pressure would act autocatalytically inducing O2 and Zn partial pressures higher than the equilibrium ones and promoting thermal decomposition. The above-cited set of experimental growth experiences, that include the presence of C, Zn, Fe, Cu and H2, will be analysed and interpreted according to this approach.  相似文献   

3.
Epitaxial growth of ZnO thin films on Si substrates by PLD technique   总被引:1,自引:0,他引:1  
Epitaxial ZnO thin films have been grown on Si(1 1 1) substrates at temperatures between 550 and 700 °C with an oxygen pressure of 60 Pa by pulsed laser deposition (PLD). A ZnO thin film deposited at 500 °C in no-oxygen ambient was used as a buffer layer for the ZnO growth. In situ reflection high-energy electron diffraction (RHEED) observations show that ZnO thin films directly deposited on Si are of a polycrystalline structure, and the crystallinity is deteriorated with an increase of substrate temperature as reflected by the evolution of RHEED patterns from the mixture of spots and rings to single rings. In contrast, the ZnO films grown on a homo-buffer layer exhibit aligned spotty patterns indicating an epitaxial growth. Among the ZnO thin films with a buffer layer, the film grown at 650 °C shows the best structural quality and the strongest ultraviolet (UV) emission with a full-width at half-maximum (FWHM) of 86 meV. It is found that the ZnO film with a buffer layer has better crystallinity than the film without the buffer layer at the same substrate temperature, while the film without the buffer layer shows a more intense UV emission. Possible reasons and preventive methods are suggested to obtain highly optical quality films.  相似文献   

4.
High-quality ZnO thin films have been grown on a Si(1 0 0) substrate by plasma-enhanced chemical vapor deposition (PECVD) using a zinc organic source (Zn(C2H5)2) and carbon dioxide (CO2) gas mixtures at a temperature of 180°C. A strong free exciton emission with a weak defect-band emission in the visible region is observed. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption peak in the absorption spectra, are closely related to the gas flow rate ratio of Zn(C2H5)2 to CO2. Full-widths at half-maximum of the free exciton emission as narrow as 93.4 meV have been achieved. Based on the temperature dependence of the PL spectra from 83 to 383 K, the exciton binding energy and the transition energy of free excitons at 0 K were estimated to be 59.4 meV and 3.36 eV, respectively.  相似文献   

5.
Epitaxial lateral overgrowth is reported for semi-polar (Al,Ga)N(1 1 .2) layers. The mask pattern consisted of periodic stripes of SiO2 oriented parallel to either the GaN[1 1 .0] or the GaN[1 1 .1] direction. Lateral growth occurred either along GaN[1 1 .1] or along GaN[1 1 .0]. For growth along the [1 1 .0] direction, coalescence was achieved for layer thicknesses >4 μm. However, planarization was not observed yielding extremely corrugated surfaces. For growth in [1 1 .1] direction, coalescence was delayed by a diminishing lateral growth rate. Growth of AlGaN during ELOG resulted in coalescence. Improvement in crystal quality of such buffer layers for the growth of InGaN/GaN quantum wells was confirmed by X-ray diffraction and photoluminescence spectroscopy.  相似文献   

6.
ZnO films on Al2O3 substrate were grown by using a pulsed laser deposition method. Through photoluminescence (PL) and X-ray diffraction (XRD) measurements, the optimum growth conditions for the ZnO growth were calculated. The results of the XRD measurement indicate that ZnO film was strongly oriented to the c-axis of hexagonal structure and epitaxially crystallized under constraints created by the substrate. The full-width half-maximum for a theta curve of the (0 0 0 2) peak was 0.201°. Also, from the PL measurement, the grown ZnO film was observed to be a free exciton, which indicates a high quality of epilayer. The Hall mobility and carrier density of the ZnO film at 293 K were estimated to be 299 cm2/V sec and , respectively. The absorption spectra revealed that the temperature dependence of the optical band gap on the ZnO films was .  相似文献   

7.
8.
This paper investigates preparation of CaSeS thin films using hot-wall epitaxy. These films can be grown epitaxially on cleaved BaF2(1 1 1) at a substrate temperature of 873 K by tailoring the VI/II flux ratio vaporized from Ca and SeS resources. The optical absorption edge of these films thus tailored can be observed clearly, shifting toward higher photon energy with increasing S content. In particular, the energy band gap of CaSe0.66S0.34, capable of lattice-matching to InP was found to be 4.69 eV, producing considerably large band gap difference of 3.34 eV between the CaSe0.66S0.34 and InP.  相似文献   

9.
ZnO/MgF2/ZnO sandwich structure films were fabricated. The effects of a buffer layer on structure and optical properties of ZnO films were investigated by X-ray diffraction, photoluminescence, optical transmittance and absorption measurements. Measurement results showed that the buffer layer had the effects of improving the quality of ZnO films and releasing the residual stresses in the films. The near-band edge emissions of ZnO films deposited on the MgF2 buffer layer were significantly enhanced compared with those deposited on bare substrate due to the smaller lattice mismatch between MgF2 and ZnO than that between fused silica and ZnO.  相似文献   

10.
ZnO nanowires with variable aspect ratios and microstructures have been prepared by a hydrothermal reaction of Zn foil and Na2C2O4 solution at 140 °C. The ZnO nanowires are single crystalline with the wurtzite structure and grow in the [0 0 0 1] direction, and their aspect ratios and microstructures can be changed by tuning the reaction time and the Na2C2O4 concentration. UV and blue-green emissions that depended on the Na2C2O4 concentration are observed from the ZnO nanowires with different aspect ratios. The photosensitivity of ZnO ultralong nanowires with honeycomb-like micropatterns is found to be about 10 at 5 V.  相似文献   

11.
High-purity semi-insulating CdTe crystals have been successfully grown by encapsulated (B2O3) Bridgman technique. The procedure strongly limits component losses allowing the achievement of stoichiometry control material and keeps a low level of impurity contamination as shown by mass spectroscopy analysis data. When strictly stoichiometry-controlled and high-purity polycrystalline source material has been used, high-resistivity crystals have been obtained without any intentional doping. EPD values in the range of 1–3×104 cm−2 have been observed in a wide region of the crystals. Luminescence spectroscopy confirms the purity and good structural quality of the material. The proposed method avoids the technical problems posed by the High Pressure Bridgman technique and fits the requirements for CdTe/CdZnTe crystals large-scale production.  相似文献   

12.
Single-crystalline ZnO films have been grown on a-plane sapphire in plasma assisted molecular beam epitaxy by introducing a high-temperature ZnO buffer layer. The residual electron concentration of the films can be lowered to 1.5×1016 cm−3, comparable with the best value ever reported for ZnO films grown on a rare and costly substrate of ScAlMgO4. A 3×3 reconstruction has been observed on the films grown in this route, which reveals that the films have very smooth surface. X-ray phi-scan spectrum of the films shows six peaks with 60° intervals, and two-dimensional X-ray diffraction datum indicates the single-crystalline nature of the films. Low temperature photoluminescence spectrum of the films shows a dominant free exciton emission and five phonon replicas, confirming the high quality of the films.  相似文献   

13.
The dependency of LPE growth rate and dislocation density on supersaturation in the growth of GaN single crystals in the Na flux was investigated. When the growth rate was low during the growth of GaN at a small value of supersaturation, the dislocation density was much lower compared with that of a substrate grown by the Metal Organic Chemical Vapor Deposition method (MOCVD). In contrast, when the growth rate of GaN was high at a large value of supersaturation, the crystal was hopper including a large number of dislocations. The relationship between the growth conditions and the crystal color in GaN single crystals grown in Na flux was also investigated. When at 800 °C the nitrogen concentration in Na–Ga melt was low, the grown crystals were always tinted black. When the nitrogen concentration at 850 °C was high, transparent crystals could be grown.  相似文献   

14.
After summing up the main physical properties of ZnO and its subsequent applications the aim of this article is to review the growth of ZnO epitaxial films by PLD, MBE, MOCVD and sputtering under their various aspects, substrates, precursors, reaction chemistry, assessment of the layers etc. …, keeping constantly in mind some key issues for the device applications of ZnO in optoelectronics, surface acoustic filters and spintronics, amongst which the growth of high quality epitaxial layers of both n- or p-type conductivity, the possibility of dissolving transition elements in the layers, the growth of ZnO related alloys and heterostructures are of major significance.  相似文献   

15.
Surface passivation of PbS nanocrystals (NC), resulting in strong photoluminescence, can be achieved by the introduction of CdS precursors. The role of CdS in the surface passivation of PbS NCs is uncertain, as the crystalline structure of CdS and PbS are different, which should impede effective epitaxial overgrowth. Absorption spectroscopy is used to show that the CdS precursors strongly interact with the PbS NC surface. Electron microscopy reveals that the introduction of CdS precursors results in an increased particle size, consistent with overcoating. However, we also find the process to be highly non-uniform. Nevertheless, evidence for epitaxial growth is found, suggesting that effective surface passivation may be possible.  相似文献   

16.
We have demonstrated InxGa1−xN epitaxial growth with InN mole fractions of x=0.07 to 0.17 on an m-plane ZnO substrate by metalorganic vapor phase epitaxy for the first time. The crystalline quality of the epilayers was found to be much higher than that of epilayers grown on a GaN template on an m-plane SiC substrate.  相似文献   

17.
We have investigated compositional plane of a wide band gap solid solution semiconductor Ca1−xCdxSe1−ySy (x0.32) using powder synthesis under thermal equilibrium condition. The solubility limit at 1273 K varies with respect to the Se concentration y, taking a minimum Cd solubility limit of 0.12 at y=0.8 and a maximum limit of 0.32 at y=1.0. It is found that the system can be lattice-matched to GaAs and InP under covering the energy band gap of ultraviolet–visible region. These results allow to design optoelectronic devices adopting the Ca1−xCdxSe1−ySy system.  相似文献   

18.
By using polyvinylpyrrolidone (PVP) as the nucleation promoter and directing agent, the shape-selective synthesis of ZnO has been realized at 35 °C. By simply modifying the amount of PVP or/and water, the product shape can be readily changed from one-dimensional structure via monolayer and semi-bilayer to bilayer structure with controlled aspect ratio (defined as monolayer thickness/edge length). As shown by both the photoluminescence and absorption spectra, the ZnO band gap can be modified by adjusting the sample shape. The low-temperature route reported here should open an effective and low-cost approach to the ZnO with tunable shapes and band gaps.  相似文献   

19.
In this study, we report on the enhancement in the light extraction efficiency of GaN blue LEDs topped with ZnO nanorods. The ZnO nanorods were grown by a two-step hydrothermal synthesis with pre-coated ZnO nanoparticles under optimized condition to give the appropriate size and quality, giving an increase in the light output efficiency of 66%. This improvement is attributed to the optimal rod size and spacing with improved thermal dissipation as compared to light extraction from plain GaN surface. During the ZnO growth on the LEDs, 0.55 M of NH3 was added and the ZnO sample was later annealed at 475 °C in N2 ambient, to drive out interstitial oxygen atoms from the tetrahedral unstable site. As a result, a high ratio of UV to orange defect band emission was achieved. The two-step growth of ZnO nanorods on GaN LEDs was effective in generating array of ZnO nanorods which serve as reflector to enhance light extraction from LEDs.  相似文献   

20.
High quality zinc oxide (ZnO) films were obtained by thermal oxidation of high quality ZnS films. The ZnS films were deposited on a Si substrate by a low-pressure metalorganic chemical vapor deposition technique. X-ray diffraction spectra indicate that high quality ZnO films possessing a polycrystalline hexagonal wurtzite structure with preferred orientation of (0 0 2) were obtained. A fourth order LO Raman scattering was observed in the films. In photoluminescence (PL) measurements, a strong PL with a full-width at half-maximum of 10 nm around 380 nm was obtained for the samples annealed at 900°C at room temperature. The maximum PL intensity ratio of the UV emission to the deep-level emission is 28 at room temperature, providing evidence of the high quality of the nanocrystalline ZnO films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号