首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of Zr-based UiO-n MOF materials (n=66, 67, 68) have been studied for iodine capture. Gaseous iodine adsorption was collected kinetically from a home-made set-up allowing the continuous measurement of iodine content trapped within UiO-n compounds, with organic functionalities (−H, −CH3, −Cl, −Br, −(OH)2, −NO2, −NH2, (−NH2)2, −CH2 NH2) by in-situ UV-Vis spectroscopy. This study emphasizes the role of the amino groups attached to the aromatic rings of the ligands connecting the {Zr6O4(OH)4} brick. In particular, the preferential interaction of iodine with lone-pair groups, such as amino functions, has been experimentally observed and is also based on DFT calculations. Indeed, higher iodine contents were systematically measured for amino-functionalized UiO-66 or UiO-67, compared to the pristine material (up to 1211 mg/g for UiO-67-(NH2)2). However, DFT calculations revealed the highest computed interaction energies for alkylamine groups (−CH2NH2) in UiO-67 (−128.5 kJ/mol for the octahedral cavity), and pointed out the influence of this specific functionality compared with that of an aromatic amine. The encapsulation of iodine within the pore system of UiO-n materials and their amino-derivatives has been analyzed by UV-Vis and Raman spectroscopy. We showed that a systematic conversion of molecular iodine (I2) species into anionic I ones, stabilized as I⋅⋅⋅I2 or I3 complexes within the MOF cavities, occurs when I2@UiO-n samples are left in ambient light.  相似文献   

2.
The scope of ascorbic acid/iodine and triphenylphosphine/iodine in methanol for the direct reduction of arsenic(V) compounds having the As[dbnd]O group has been investigated. Ascorbic acid/iodine reduces arsonic acids, diphenylarsinic acid (but not dimethylarsinic acid), and triphenylarsine oxide. The rates of reduction depend on the electronic effects of the ligands bound to arsenic and on the hydrogen-bonding strength of the species, when present. When the As(V) compound has an [sbnd]NH 2 or an [sbnd]NH 3 + group, the reduction product reacts with a ketonic form of dehydroascorbic acid, giving condensation product(s). Triphenylphosphine/iodine reduced slowly the zwitterionic o-aminophenylarsonic acid but reduced faster the hydrochloric acid salt of the same acid. It reduced dimethylarsinic acid as well because the powerful electron-withdrawing Ph 3 P +coordinated to As[dbnd]O seems to outweigh the electronic and hydrogen bonding effects.  相似文献   

3.
A mixture of molecular iodine and phenyliodine(III) bis(trifluoroacetate) (BTI) in CH3CN (or CH3OH) iodinates the aromatic ring of some activated alkyl aryl ketones. A different outcome results if PhSeSePh is used instead of I2 in the presence of BTI. In CH3CN the aromatic phenylselenenylation is still observed while in CH3OH the formation of α-phenylseleno ketones occurs followed by the conversion of these intermediates into the corresponding α,α-dimethoxycarbonyl compounds, in moderate to good yields.  相似文献   

4.
A variety of Hantzsch ester 1,4‐dihydropyridines are efficiently oxidized to their corresponding pyridine compounds with iodine under normal conditions and ultrasound irradiation. The reactions were carried out in refluxing CH3CN.  相似文献   

5.
The solubility of iodine in 30-55% nitric acid at 25°C was measured. Particular attention was given to the control of equilibration in the system. An equation was suggested for estimating the iodine solubility in nitric acid in the concentration range 0-70 wt % HNO3.  相似文献   

6.
The adsorption of iodine and iodide anions on a Pt/Pt electrode (0.5 M H2SO4 as a supporting solution) is compared using potentiodynamic and galvanostatic charging curves, transients of the current and open-circuit potential (OCP), and analytical measurements. Variations in the charge and OCP during the adsorption obey relationships derived for strong adsorption of neutral species and ions on a hydrogen electrode with the formation of irreversibly adsorbed atoms. The main product of the I2 and I chemisorption in acid solutions is adsorbed iodine atoms. However, adsorption of iodine occurs in noticeable amounts and above a monolayer in the form of species that undergo electrodesorption during a cathodic polarization to potentials of the beginning of hydrogen adsorption. In the presence of a monolayer of adsorbed iodine atoms, potential of the zero total charge of a Pt/Pt electrode is in the oxygen adsorption region.  相似文献   

7.
Ultraviolet irradiation of aqueous solutions of iodide/iodate ion containing low molecular weight organic acids generates volatile iodine species that are amenable to detection by atomic spectrometry. In the presence of formic, acetic or propionic acids, photo-chemical generation results in the formation of HI, methyl- and ethyl-iodide respectively, the latter two products being directly identified by gas chromatography–mass spectrometry. Deuterium and 13C-labeled reagents were employed to elucidate the provenance of the alkyl group. Use of 13CH3–COOH produced 13CH3–I; deuterated acetic acid (D3C-COOD) resulted in the formation of CD3–I. These observations indicate direct transfer of the alkyl group from the carboxylic acid to iodide, consistent with the suggestion that the mechanism of synthesis involves radical induced reactions.  相似文献   

8.
A human’s diet should be diverse and rich in vitamins, macro- and microelements essential for the proper functioning of the human body. Globally, a high percentage of the human population suffers from malnutrition, deficiencies of nutrients and vitamins also known as the problem of hidden hunger. This problem it is not only common in poor countries, but also occurs in developed countries. Iodine is a nutrient crucial for the proper functioning of the human and animal body. For plants, it is referred to as a beneficial element or even a microelement. The design of the biofortification experiment was determined on the basis of the interaction of iodine and vanadium (synergistic interaction in marine algae), where vanadium-dependent iodoperoxidase catalyzes apoplastic oxidation of iodine, resulting in high efficiency of iodine uptake and accumulation in brown algae (Laminaria digitate). Three independent experiments (Exp.) were carried out with the foliar application of vanadium (V) and iodine (I) compounds. The main differences between the experiments with the adapted proper corn biofortification method were the different application stage between the individual experiments, the application intervals and the dose of the iodine–vanadium compound. In each experiment, the accumulation of iodine and vanadium in the grain was several times lower than in the leaves. The combination iodine and vanadium significantly increased the accumulation of iodine in the grain in the case of applying V with inorganic iodine compounds, and a decrease in the accumulation of I after applying V with organic iodine compound —especially in Exp. No. 3. In grain, the highest content of I, IO3 was in combination with the application of 2-iodobenzoic acid (products of its metabolism). In most of the tested combinations, vanadium stimulated the accumulation/synthesis of exogenous/endogenous 5-iodosalicylic acid (5ISA) and 2-iodobenzoic acid (2IBeA), respectively, and decreased the content of 2,3,5-triiodobenzoic acid (2,3,5-triIBeA) in leaves and grains. The tested compounds I and V and the combinations of their application had a diversified effect on the vitamin C content in the grains. Vanadium in the lower dose of 0.1 µM significantly increased the sugar content in the grain.  相似文献   

9.
Carboxylic acid or primary amine-terminated poly(isobutyl vinyl ethers) were synthesized by living cationic polymerizations with functionalized initiators (CH3CHIO? CH2CH2 ? X; X: that are the adducts of the corresponding vinyl ethers (CH2 ? CH ? OCH2CH2? X) with hydrogen iodide. In the presence of iodine, these initiators induced living cationic polymerization of isobutyl vinyl ether to give polymers with the α-end group of X originating from the initiators. The polymer molecular weights were regulated by the monomer to initiator feed ratio and the molecular weight distributions were very narrow (M w/M n ≤ 1.15). Subsequent deprotection of the terminal group X led to polymers with a terminal carboxylic acid or primary amine. 1H- and 13C-NMR analyses showed that the end functionalities of these polymers were all close to unity.  相似文献   

10.
In hydrochloric acid medium sodium meta-vanadate was used as a volumetric reagent for the determination of copper, zinc, cobalt, mercury, and lead. Cu+2, Zn+2 and Co+2were precipitated as complex mercurythiocyanates, Hg+2 as mercuric zinc thiocyanate and Pb+2 as Iodide. The thiocyanates were dissolved in concentrated hydrochloric acid and titrated against standard sodium meta-vanadate solution in the presence of iodine monochloride as a pie.oxidizer and catalyst. In titration of the iodide against the meta-vanadate. it was not necessary to add iodine monochloride to the titrant because it is formed during the titration. Chloroform was used as an indicator. It was pink owing to the liberation of iodine during the titration and became pale yellow at the end-point because of the formation of iodine monochlonde.  相似文献   

11.
The chromane nucleus is common to a plenum of bioactive small molecules where it is frequently oxidized at position 3. Motivated by the importance of this position in conferring efficacy, and the prominence of bioisosterism in drug discovery, an iodine(I)/iodine(III) catalysis strategy to access enantioenriched 3‐fluorochromanes is disclosed (up to 7:93 e.r.). In situ generation of ArIF2 enables the direct fluorocyclization of allyl phenyl ethers to generate novel scaffolds that manifest the stereoelectronic gauche effect. Mechanistic interrogation using deuterated probes confirms a stereospecific process consistent with a type IIinv pathway.  相似文献   

12.
The liquid-air interface offers a platform for the in-plane growth of free-standing materials. However, it is rarely used for inorganic perovskites and ultrathin non-layered perovskites. Herein the liquid-air interfacial synthesis of inorganic perovskite nanosheets (Cs3Bi2I9, Cs3Sb2I9) is achieved simply by drop-casting the precursor solution with only the addition of iodine. The products are inaccessible without iodine addition. The thickness and lateral size of these nanosheets can be adjusted through the iodine concentration. The high volatility of the iodine spontaneously drives precursors that normally stay in the liquid to the liquid-air interface. The iodine also repairs in situ iodine vacancies during perovskite growth, giving enhanced optical and optoelectronic properties. The liquid-air interfacial growth of ultrathin perovskites provides multi-degree-of-freedom for constructing perovskite-based heterostructures and devices at atomic scale.  相似文献   

13.
ARSTRACT: Hypervalent iodine oxidstion of 1,2-dicarhethoxy hydrazine (1) and 4-substituted urazoles (3) using iodobenzene diacetate or pentafluoroiodobenzene bis-trifluoroacetate in CH2Cl2 at room temperature proceeds smoothly to yield ethyl azodicarboxylate (2) and 4-substituted 1,2,4-triazoline-3,5-diones (4) in excellent yields.  相似文献   

14.
《中国化学》2018,36(9):845-850
The arylthio‐substituted tetrathiafulvalenes (Ar‐S‐TTFs) are electron donors having three reversible states, neutral, cation radical, and dication. The charge‐transfer (CT) between Ar‐S‐TTFs ( TTF1 — TTF3 ) and iodine (I2) is reported herein. TTF1 — TTF3 show the CT with I2 in the CH2Cl2 solution, but they are not completely converted into cation radical state. In CT complexes of TTF1 — TTF3 with I2, the charged states of Ar‐S‐TTFs are distinct from those in solution. TTF1 is at cation radical state, and TTF2 — TTF3 are oxidized to dication. The iodine components in complexes show various structures including 1‐D chain of V‐shaped (I5), and 2‐D and 3‐D iodine networks composed of I2 and (I3).  相似文献   

15.
The iodine binding capacity (IBC) of glycogen is around 0.30% (w/w) at 3°C. The amount of iodine complexed comprises about 12.5% of the mass of glycogen that takes part in the glycogen–iodine (GI) complex formation. This suggests involvement of four iodine atoms for every 25 anhydroglucose units (AGU, C6H10O5). Since the chromophore is due to the I4 unit within the helix of 11 AGUs, only 44% of the AGUs (11 out of 25) are involved in the complex formation. The heat of formation of the GI complex is around −40 kJ/mol of I2 bonded. These results suggest remarkable similarities with those of the amylopectin–iodine (API) complex. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1409–1412, 1997  相似文献   

16.
A reliable method for direct synthesis of β‐dichlorosubstituted acetanilides is reported. The key transformation involves the oxidative and catalytic cleavage of a carbon‐carbon bond in the presence of iodine trichloride (ICl3). In this protocol ICl3 is used not only as the catalyst but also as the oxidant which widely broadens the scope of its application in organic synthetic chemistry.  相似文献   

17.
In this study, we developed a novel cerium/ascorbic acid/iodine active species to design a redox flow battery (RFB), in which the cerium nitrate hexahydrate [Ce(NO3)3·6H2O] was used as a positive Ce3+/Ce4+ ion pair, and the potassium iodate (KIO3) containing ascorbic acid was used as a negative I2/I ion pair. In order to improve the electrochemical activity and to avoid cross-contamination of the redox pair ions, the electroless plating and sol–gel method were applied to modify the carbon paper electrode and the Nafion 117 membrane. The electrocatalytic and electrochemical properties of the composite electrode using methanesulfonic acid as a supporting electrolyte were assessed using the cyclic voltammetry (CV) test. The results showed that the Ce (III)/Ce (IV) active species presented a symmetric oxidation/reduction current ratio (1.09) on the C–TiO2–PdO composite electrode. Adding a constant amount of ascorbic acid to the iodine solution led to a good reversible oxidation/reduction reaction. Therefore, a novel Ce/ascorbic acid/I RFB was developed with C–TiO2–PdO composite electrodes and modified Nafion 117–SiO2–SO3H membrane using the staggered-type flow channel, of which the energy efficiency (EE%) can reach about 72%. The Ce/ascorbic acid/I active species can greatly reduce the electrolyte cost compared to the all-vanadium redox flow battery system, and it therefore has greater development potential.  相似文献   

18.
By X-ray diffraction the crystal and molecular structure of iodoprotatrane (tris(2-hydroxyethyl)ammonium iodide I[HN(CH2CH2OH)3]+ (IP) at 120 K and 293 K is determined. The IP cation, as in all protatranes, has the endo conformation. The N-H bond is surrounded by three CH2CH2OH groups. The stability of this configuration is explained by the intramolecular trifurcated inductive interaction with three oxygen atoms through the space of the nitrogen atom. In the IP crystal packing, each iodine anion is linked by three strong OH...I (2.63 Å) and three weak I...H (3.13 Å) hydrogen bonds with six cations from the CH2N group. This indicates a greater nucleophilicity of the iodine atom.  相似文献   

19.
The substituted thiourea, 4‐methyl‐3‐thiosemicarbazide, was oxidized by iodate in acidic medium. In high acid concentrations and in stoichiometric excess of iodate, the reaction displays an induction period followed by the formation of aqueous iodine. In stoichiometric excess of methylthiosemicarbazide and high acid concentration, the reaction shows a transient formation of aqueous iodine. The stoichiometry of the reaction is: 4IO + 3CH3NHC(S)NHNH2 + 3H2O → 4I + 3SO + 3CH3NHC(O)NHNH2 + 6H+ (A). Iodine formation is due to the Dushman reaction that produces iodine from iodide formed from the reduction of iodate: IO + 5I + 6H+ → 3I2(aq) + 3H2O (B). Transient iodine formation is due to the efficient acid catalysis of the Dushman reaction. The iodine produced in process B is consumed by the methylthiosemicarbazide substrate. The direct reaction of iodine and methylthiosemicarbazide was also studied. It has a stoichiometry of 4I2(aq) + CH3NHC(S)NHNH2 + 5H2O → 8I + SO + CH3NHC(O)NHNH2 + 10H+ (C). The reaction exhibits autoinhibition by iodide and acid. Inhibition by I is due to the formation of the triiodide species, I, and inhibition by acid is due to the protonation of the sulfur center that deactivates it to further electrophilic attack. In excess iodate conditions, the stoichiometry of the reaction is 8IO + 5CH3NHC(S)NHNH2 + H2O → 4I2 + 5SO + 5CH3NHC(O)NHNH2 + 2H+ (D) that is a linear combination of processes A and B. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 193–203, 2000  相似文献   

20.
A simple process for the oxy-monofluoromethylation of alkenes is described. In combination with visible-light copper(I) photoredox catalysis, an easily accessible iodine(III) reagent containing monofluoroacetoxy ligands serves as a powerful source of a monofluoromethyl (CH2F) radical, enabling the step economical synthesis of γ-fluoro-acetates from a broad range of olefinic substrates under mild conditions. Applications to late-stage diversification of alkenes derived from complex molecules, amino acids and the synthesis of fluoromethylated heterocycles are also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号