首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The [Z(2)Ln(THF)](2)(mu-eta(2)():eta(2)()-N(2)) complexes (Z = monoanionic ligand) generated by reduction of dinitrogen with trivalent lanthanide salts and alkali metals are strong reductants in their own right and provide another option in reductive lanthanide chemistry. Hence, lanthanide-based reduction chemistry can be effected in a diamagnetic trivalent system using the dinitrogen reduction product, [(C(5)Me(5))(2)(THF)La](2)(mu-eta(2)():eta(2)()-N(2)), 1, readily obtained from [(C(5)Me(5))(2)La][BPh(4)], KC(8), and N(2). Complex 1 reduces phenazine, cyclooctatetraene, anthracene, and azobenzene to form [(C(5)Me(5))(2)La](2)[mu-eta(3):eta(3)-(C(12)H(8)N(2))], 2, (C(5)Me(5))La(C(8)H(8)), 3, [(C(5)Me(5))(2)La](2)[mu-eta(3):eta(3)-(C(14)H(10))], 4, and [(C(5)Me(5))La(mu-eta(2)-(PhNNPh)(THF)](2), 5, respectively. Neither stilbene nor naphthalene are reduced by 1, but 1 reduces CO to make the ketene carboxylate complex {[(C(5)Me(5))(2)La](2)[mu-eta(4)-O(2)C-C=C=O](THF)}(2), 6, that contains CO-derived carbon atoms completely free of oxygen.  相似文献   

2.
The reactivities of the highly electrophilic boranes ClB(C(6)F(5))(2) (1) and [HB(C(6)F(5))(2)](n) (2) towards a range of organometallic reagents featuring metals from Groups 7-10 have been investigated. Salt elimination chemistry is observed 1 between and the nucleophilic anions eta(5)-C(5)R(5))Fe(CO)(2)](-)(R = H or Me) and [Mn(CO)(5)](-), leading to the generation of the novel boryl complexes (eta(5)-C(5)R(5))Fe(CO)(2)B(C(6)F(5))(2)[R = H (3) or Me (4)] and (OC)(5)MnB(C(6)F(5))(2) (5). Such systems are designed to probe the extent to which the strongly sigma-donor boryl ligand can also act as a pi-acceptor; a variety of spectroscopic, structural and computational probes imply that even with such strongly electron withdrawing boryl substituents, the pi component of the metal-boron linkage is a relatively minor one. Similar reactivity is observed towards the hydridomanganese anion [(eta(5)-C(5)H(4)Me)Mn(CO)(2)H](-), generating a thermally labile product identified spectroscopically as (eta(5)-C(5)H(4)Me)Mn(CO)(2)(H)B(C(6)F(5))(2) (6). Boranes 1 and 2 display different patterns of reactivity towards low-valent platinum and rhodium complexes than those demonstrated previously for less electrophilic reagents. Thus, reaction of 1 with (Ph(3)P)(2)Pt(H(2)C=CH(2)) ultimately generates EtB(C(6)F(5))(2) (10) as the major boron-containing product, together with cis-(Ph(3)P)(2)PtCl(2) and trans-(Ph(3)P)(2)Pt(C(6)F(5))Cl (9). The cationic platinum hydride [(Ph(3)P)(3)PtH](+) is identified as an intermediate in the reaction pathway. Reaction of with [(Ph(3)P)(2)Rh(mu-Cl)](2), in toluene on the other hand, appears to proceed via ligand abstraction with both Ph(3)P.HB(C(6)F(5))(2) (11) and the arene rhodium(I) cation [(Ph(3)P)(2)Rh(eta(6)-C(6)H(5)Me)](+) (14) ultimately being formed.  相似文献   

3.
Two new vanadoselenites, [SeV(3)O(11)](3)(-) and [Se(2)V(2)O(10)](2)(-), were synthesized by reacting SeO(2) with VO(3)(-). Single-crystal X-ray structural analyses of [(n-C(4)H(9))(4)N](3)[SeV(3)O(11)].0.5H(2)O [orthorhombic, space group P2(1)2(1)2, a = 22.328(5) A, b = 44.099(9) A, c = 12.287(3) A, Z = 8] and [[(C(6)H(5))(3)P](2)N](2)[Se(2)V(2)O(10)] [monoclinic, space group P2(1)/n, a = 12.2931(3) A, b = 13.5101(3) A, c = 20.9793(5) A, beta = 106.307(1) degrees, Z = 2] revealed that both anions are composed of Se(x)()V(4)(-)(x)()O(4) rings. The (51)V, (77)Se, and (17)O NMR spectra established that both [SeV(3)O(11)](3)(-) and [Se(2)V(2)O(10)](2)(-) anions maintain this ring structure in solution.  相似文献   

4.
Xin F  Pope MT  Long GJ  Russo U 《Inorganic chemistry》1996,35(5):1207-1213
Eight tris(organotin)-substituted Keggin tungstosilicate heteropolyanions have been synthesized and characterized by elemental analysis, infrared and M?ssbauer spectroscopy, multinuclear NMR, and X-ray crystallography. The new anions contain alpha- or beta-SiW(9)O(34)(10)(-) moieties and are of two structural types, [(RSn)(3)(SiW(9)O(37))](7)(-) (R, isomer: Ph, alpha-, 1; n-Bu, alpha-, 2; Ph, beta-, 3; n-Bu, beta-, 4) and [(RSnOH)(3)(SiW(9)O(34))(2)](14)(-) (Ph, alpha-, 5; n-Bu, alpha-, 6; Ph, beta-, 7; n-Bu, beta-, 8). Crystals of Cs(4)H(3)[(PhSn)(3)(SiW(9)O(37))].8H(2)O (anion 3) are monoclinic, space group C2/c, with lattice constants a = 48.91(2) ?, b = 12.111(3) ?, c = 20.334(9) ?, beta = 102.30 degrees, and Z = 8. The anion has nominal C(3)(v)() symmetry and has a structure with three corner-shared WO(6) octahedra of the beta-Keggin anion replaced by three PhSnO(5) groups. Crystals of Cs(9)H(5)[(BuSnOH)(3)(SiW(9)O(34))(2)].36H(2)O (anion 6) are tetragonal, space group P&fourmacr;2(1)m, with lattice constants a = b = 29.005(4) ?, c = 13.412(4) ?, and Z = 4. The anion has the anticipated D(3)(h)() symmetry and contains three BuSnOH groups sandwiched between A,alpha-SiW(9)O(34)(10)(-) anions.  相似文献   

5.
Four Fe(III) compounds and one Fe(II) compound containing mononuclear, homoleptic, fluorinated phenolate anions of the form [Fe(OAr)(m)](n-) have been prepared in which Ar(F) = C(6)F(5) and Ar' = 3,5-C(6)(CF(3))(2)H(3): (Ph(4)P)(2)[Fe(OAr(F))(5)], 1, (Me(4)N)(2)[Fe(OAr(F))(5)], 2, {K(18-crown-6)}(2)[Fe(OAr(F))(5)], 3a, {K(18-crown-6)}(2)[Fe(OAr')(5)], 3b, and {K(18-crown-6)}(2)[Fe(OAr(F))(4)], 6. Two dinuclear Fe(III) compounds have also been prepared: {K(18-crown-6)}(2)[(OAr(F))(3)Fe(μ(2)-O)Fe(OAr(F))(3)], 4, and {K(18-crown-6)}(2)[(OAr(F))(3)Fe(μ(2)-OAr(F))(2)Fe(OAr(F))(3)], 5. These compounds have been characterized with UV-vis spectroscopy, elemental analysis, Evans method susceptibility, and X-ray crystallography. All-electron, geometry-optimized DFT calculations on four [Ti(IV)(OAr)(4)] and four [Fe(III)(OAr)(4)](-) species (Ar = 2,3,5,6-C(6)Me(4)H, C(6)H(5), 2,4,6-C(6)Cl(3)H(2), C(6)F(5)) with GGA-BP and hybrid B3LYP basis sets demonstrated that, under D(2d) symmetry, π donation from the O 2p orbitals is primarily into the d(xy) and d(z(2)) orbitals. The degree of donation is qualitatively consistent with expectations based on ligand Br?nsted basicity and supports the contention that fluorinated phenolate ligands facilitate isolation of nonbridged homoleptic complexes due to their reduced π basicity at oxygen.  相似文献   

6.
Divalent manganese, cobalt, nickel, and zinc complexes of 6-Ph(2)TPA (N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-Ph(2)TPA)Mn(CH(3)OH)(3)](ClO(4))(2) (1), [(6-Ph(2)TPA)Co(CH(3)CN)](ClO(4))(2) (2), [(6-Ph(2)TPA)Ni(CH(3)CN)(CH(3)OH)](ClO(4))(2) (3), [(6-Ph(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (4)) and 6-(Me(2)Ph)(2)TPA (N,N-bis((6-(3,5-dimethyl)phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; [(6-(Me(2)Ph)(2)TPA)Ni(CH(3)CN)(2)](ClO(4))(2) (5) and [(6-(Me(2)Ph)(2)TPA)Zn(CH(3)CN)](ClO(4))(2) (6)) have been prepared and characterized. X-ray crystallographic characterization of 1A.CH(3)()OH and 1B.2CH(3)()OH (differing solvates of 1), 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN revealed mononuclear cations with one to three coordinated solvent molecules. In 1A.CH(3)()OH and 1B.2CH(3)()OH, one phenyl-substituted pyridyl arm is not coordinated and forms a secondary hydrogen-bonding interaction with a manganese bound methanol molecule. In 2.2CH(3)()CN, 3.CH(3)()OH, 4.2CH(3)()CN, and 6.2.5CH(3)()CN, all pyridyl donors of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands are coordinated to the divalent metal center. In the cobalt, nickel, and zinc derivatives, CH/pi interactions are found between a bound acetonitrile molecule and the aryl appendages of the 6-Ph(2)TPA and 6-(Me(2)Ph)(2)TPA ligands. (1)H NMR spectra of 4 and 6 in CD(3)NO(2) solution indicate the presence of CH/pi interactions, as an upfield-shifted methyl resonance for a bound acetonitrile molecule is present. Examination of the cyclic voltammetry of 1-3 and 5 revealed no oxidative (M(II)/M(III)) couples. Admixture of equimolar amounts of 6-Ph(2)TPA, M(ClO(4))(2).6H(2)O, and Me(4)NOH.5H(2)O, followed by the addition of an equimolar amount of acetohydroxamic acid, yielded the acetohydroxamate complexes [((6-Ph(2)TPA)Mn)(2)(micro-ONHC(O)CH(3))(2)](ClO(4))(2) (8), [(6-Ph(2)TPA)Co(ONHC(O)CH(3))](ClO(4))(2) (9), [(6-Ph(2)TPA)Ni(ONHC(O)CH(3))](ClO(4))(2) (10), and [(6-Ph(2)TPA)Zn(ONHC(O)CH(3))](ClO(4))(2) (11), all of which were characterized by X-ray crystallography. The Mn(II) complex 8.0.75CH(3)()CN.0.75Et(2)()O exhibits a dinuclear structure with bridging hydroxamate ligands, whereas the Co(II), Ni(II), and Zn(II) derivatives all exhibit mononuclear six-coordinate structures with a chelating hydroxamate ligand.  相似文献   

7.
A new group of CO-releasing molecules, CO-RMs, based on cyclopentadienyl iron carbonyls have been identified. X-Ray structures have been determined for [(eta-C(5)H(4)CO(2)Me)Fe(CO)(2)X], X = Cl, Br, I, NO(3), CO(2)Me, [(eta-C(5)H(4)CO(2)Me)Fe(CO)(2)](2), [(eta-C(5)H(4)CO(2)CH(2)CH(2)OH)Fe(CO)(2)](2) and [(eta-C(5)H(4)CO(2)Me)Fe(CO)(3)][FeCl(4)]. Half-lives for CO release, (1)H, (13)C, and (17)OC NMR and IR spectra have been determined along with some biological data for these compounds, [(eta-C(5)H(4)CO(2)CH(2)CH(2)OH)Fe(CO)(3)](+) and [[eta-C(5)H(4)(CH(2))(n)CO(2)Me]Fe(CO)(3)](+), n = 1, 2. More specifically, cytotoxicity assays and inhibition of nitrite formation in stimulated RAW264.7 macrophages are reported for most of the compounds analyzed. [(eta-C(5)H(5))Fe(CO)(2)X], X = Cl, Br, I, were also examined for comparison. Correlations between the half-lives for CO release and spectroscopic parameters are found within each group of compounds, but not between the groups.  相似文献   

8.
Toluene solutions of C(60) react upon UV irradiation with Fe(2)S(2)(CO)(6) to give C(60)[S(2)Fe(2)(CO)(6)](n)() where n = 1-6. C(60)[S(2)Fe(2)(CO)(6)](n)() where n = 1-3 have been isolated and characterized. Crystallographic studies of C(60)S(2)Fe(2)(CO)(6) show that the S-S bond of the Fe(2) reagent is cleaved to give a dithiolate with idealized C(2)(v)() symmetry. The addition occurred at a 6,6 fusion, and the metrical details show that the Fe(2) portion of the molecule resembles C(2)H(4)S(2)Fe(2)(CO)(6). IR spectroscopic measurements indicate that the Fe(2)(CO)(6) subunits in the multiple-addition species (n > 1) interact only weakly. UV-vis spectra of the adducts show a shift to shorter wavelength with addition of each S(2)Fe(2)(CO)(6) unit. Photoaddition of the phosphine complex Fe(2)S(2)(CO)(5)(PPh(3)) to C(60) gave C(60)[S(2)Fe(2)(CO)(5)(PPh(3))](n)(), where n = 1-3. (31)P{(1)H} NMR studies show that the double adduct consists of multiple isomers. Photoaddition of Fe(2)S(2)(CO)(6) to C(70) gave a series of adducts C(70)[S(2)Fe(2)(CO)(6)](n)() where n = 1-4. HPLC analyses show one, four, and three isomers for the adducts, respectively.  相似文献   

9.
Wang QM  Mak TC 《Inorganic chemistry》2003,42(5):1637-1643
The first successful attempt to construct supramolecular entities via incorporation of bifunctional exodentate ligands into the silver acetylide system is reported. Coordination assembly with nitrogen-donor spacers led to the formation of five distinct supramolecular complexes, namely [(Ag(2)C(2))(AgCF(3)CO(2))(4)(pyz)(2)](n) (1), [(Ag(2)C(2))(2)(AgCF(3)CO(2))(10)(CF(3)CO(2))(4)(DabcoH)(4)(H(2)O)(1.5)].H(2)O (2), [(Ag(2)C(2))(AgCF(3)CO(2))(4)(CF(3)CO(2))(bpaH)](n)() (3), [(Ag(2)C(2))(AgCF(3)CO(2))(8)(bpa)(4)](n) (4), and [(Ag(2)C(2))(2)(AgCF(3)CO(2))(10)(bppz)(2)(H(2)O)](n) (5) (pyz = pyrazine; Dabco = 1,4-diazabicyclo[2.2.2]octane; bpa = 1,2-bis(4-pyridyl)ethane; bppz = 2,3-bis(2-pyridyl)pyrazine). Complex 1 is a three-dimensional framework composed of silver columns cross-linked by pyrazine bridges, whereas 2 contains a discrete supermolecule whose core is a Ag(14) double cage that is completely surrounded by trifluoroacetate, aqua, and terminal monoprotonated Dabco ligands. Complex 3 has a branched-tree architecture with one terminal of the bpa ligand attached to the silver backbone and the other exposed and protonated. In 4, neutral decanuclear [(Ag(2)C(2))(AgCF(3)CO(2))(8)] units are interlinked by bpa spacers adopting both gauche and anti conformations to generate a layer structure. Another two-dimensional network was formed with bppz serving as an angular bridging ligand in 5, in which the building unit is a silver quadruple cage containing 24 silver atoms.  相似文献   

10.
A convenient synthesis of (t)Bu(3)SiSH and (t)Bu(3)SiSNa(THF)(x)() led to the exploration of "(t)Bu(3)SiSMX" aggregation. The dimer, [((t)Bu(3)SiS)Fe](2)(mu-SSi(t)Bu(3))(2) (1(2)), was formed from [{(Me(3)Si)(2)N}Fe](2)(mu-N(SiMe(3))(2))(2) and the thiol, and its dissolution in THF generated ((t)Bu(3)SiS)(2)Fe(THF)(2) (1-(THF)(2)). Metathetical procedures with the thiolate yielded aggregate precursors [X(2)Fe](mu-SSi(t)Bu(3))(2)[FeX(THF)]Na(THF)(4) (3-X, X = Cl, Br) and cis-[(THF)IFe](2)(mu-SSi(t)Bu(3))(2) (4). Thermal desolvations of 3-Cl, 3-Br and 4 afforded molecular wheels [Fe(mu-X)(mu-SSi(t)Bu(3))](12)(C(6)H(6))(n) (5-FeX, X = Cl, Br) and the ellipse [Fe(mu-I)(mu-SSi(t)Bu(3))](14)(C(6)H(6))(n) (6-FeI). Related metathesis and desolvation sequences led to wheels [Co(mu-Cl)(mu-SSi(t)Bu(3))](12)(C(6)H(6))(n) (5-CoCl) and [Ni(mu-Br)(mu-SSi(t)Bu(3))](12)(C(6)H(6))(n) (5-NiBr). The nickel wheel disproportionated to give, in part, [((t)Bu(3)SiS)Ni](2)(mu-SSi(t)Bu(3))(2) (7), which was also synthesized via salt metathesis. X-ray structural studies of 1(2) revealed a roughly planar Fe(2)S(4) core, while 1-(THF)(2), 3-Br, and 4 possessed simple distorted tetrahedral and edge-shared tetrahedral structures. X-ray structural studies revealed 5-MX (MX = FeCl, FeBr, CoCl, NiBr) to be wheels based on edge-shared tetrahedra, but while the pseudo-D(6)(d) wheels of 5-FeCl, 5-CoCl, and 5-FeBr pack in a body-centered arrangement, those of pseudo-C(6)(v)() 5-NiBr exhibit hexagonal packing and two distinct trans-annular d(Br...Br). Variable-temperature magnetic susceptibility measurements were conducted on 5-FeCl, 5-CoCl, 5-FeBr, and 6-FeI, and the latter three are best construed as weakly antiferromagnetic, while 5-FeCl exhibited modest ferromagnetic coupling. Features suggesting molecular magnetism are most likely affiliated with phase changes at low temperatures.  相似文献   

11.
The synthesis, isolation and structural characterization of the sulfite polyoxomolybdate clusters alpha-(D(3h))(C(20)H(44)N)(4){alpha-[Mo(18)O(54)(SO(3))(2)]}CH(3)CN and beta-(D(3d))(C(20)H(44)N)(4){beta-[Mo(18)O(54)(SO(3))(2)]}CH(3)CN is presented. Voltammetric studies in acetonitrile (0.1 M Hx(4)NClO(4), Hx(4)N=tetra-n-hexylammonium) reveal the presence of an extensive series of six one-electron reduction processes for both isomers. Under conditions of bulk electrolysis, the initial [Mo(18)O(54)(SO(3))(2)](4-/5-) and [Mo(18)O(54)(SO(3))(2)](5-/6-) processes produce stable [Mo(18)O(54)(SO(3))(2)](5-) and [Mo(18)O(54)(SO(3))(2)](6-) species, respectively, and the same reduced species may be produced by photochemical reduction. Spectroelectrochemical data imply that retention of structural form results upon reduction, so that both alpha and beta isomers are available at each of the 4-, 5-, and 6-redox levels. However, the alpha isomer is the thermodynamically favored species in both the one- and two-electron-reduced states, with beta-->alpha isomerization being detected in both cases on long time scales (days). EPR spectra also imply that increasing localization of the unpaired electron occurs over the alpha- and beta-[Mo(18)O(54)(SO(3))(2)](5-) frameworks as the temperature approaches 2 K where the EPR spectra show orthorhombic symmetry with different g and hyperfine values for the alpha and beta isomers. Theoretical studies support the observation that it is easier to reduce the alpha cluster than the beta form and also provide insight into the driving force for beta-->alpha isomerization in the reduced state. Data are compared with that obtained for the well studied alpha-[Mo(18)O(54)(SO(4))(2))](4-) sulfate cluster.  相似文献   

12.
Coordination of sigma-aryl carbanions by chloroiron(II) 5,20-ditolyl-10,15-diphenyl-21-oxaporphyrin (ODTDPP)Fe(II)Cl has been followed by (1)H NMR spectroscopy. Addition of pentafluorophenyl Grignard reagent (C(6)F(5))MgBr to the toluene solution of (ODTDPP)Fe(II)Cl in the absence of dioxygen at 205 K resulted in the formation of the high-spin (ODTDPP)Fe(II)(C(6)F(5)). The titration of (ODTDPP)Fe(II)Cl with a solution of (C(6)H(5))MgBr carried at 205 K yields a rare six-coordinate species which binds two sigma-aryl ligands [(ODTDPP)Fe(II)(C(6)H(5))(2)](-). Warming of the [(ODTDPP)Fe(II)(C(6)H(5))(2)](-) solution above 270 K results in the decomposition to mono-sigma-phenyliron species (ODTDPP)Fe(II)(C(6)H(5)). Controlled oxidation of [(ODTDPP)Fe(II)(C(6)H(5))(2)](-) with Br(2) affords (ODTDPP)Fe(III)(C(6)H(5))Br, which demonstrates a typical (1)H NMR pattern of low-spin sigma-aryl iron(III) porphyrin. The considered oxidation mechanism involves the (ODTDPP)Fe(III)(C(6)H(5))(2) species, which is readily reduced to the iron(I) 21-oxaporphyrin, followed by oxidation with Br(2) and replacement of one bromide anion by aryl substituent. The (1)H NMR spectra of paramagnetic iron complexes have been examined in detail. Functional group assignments have been made with the use of selective deuteration. The peculiar (1)H NMR spectral features of [(ODTDPP)Fe(II)(p-CH(3)C(6)H(4))(2)](-) (sigma-p-tolyl: ortho, 30.8; meta, 53.6; para-CH(3), 42.1; furan: -16.0; beta-H pyrrole: -27.5, -34.3, -41.8 ppm, at 205 K) are without a parallel to any iron(II) porphyrin or heteroporphyrin and indicate a profound alteration of the electronic structure of iron(II) porphyrin upon the coordination of two sigma-aryls.  相似文献   

13.
Low-temperature oxidation of Fe(2)(S(2)C(n)H(2n)(CNMe)(6-x)(CO)x (n = 2, 3; x = 2, 3) affords a family of mixed carbonyl-isocyanides of the type [Fe(2)(S(2)C(n)H(2n)(CO)x(CNMe)(7-x)](2+). The degree of substitution is controlled by the RNC/Fe ratio, as well as the degree of initial substitution at iron, with tricarbonyl derivatives favoring more highly carbonylated products. The structures of the monocarbonyl derivatives [Fe(2)(S(2)C(n)H(2n))(mu-CO)(CNMe)(6)](PF(6))(2) (n = 2,3) established crystallographically and spectroscopically, are quite similar, with Fe---Fe distances of ca. 2.5 A, although the mu-CO is unsymmetrical in the propanedithiolate derivative. Isomeric forms of [Fe(2)(S(2)C(3)H(6))(CO)(CNMe)(6)](PF(6))(2) were characterized where the CO is bridging or terminal, the greatest structural difference being the 0.1 A elongation of the Fe---Fe distance when MeNC (vs CO) is bridging. In the dicarbonyl species, [Fe(2)(S(2)C(2)H(4))(mu-CO)(CO)(CNMe)(5)](PF(6))(2), the terminal CO ligand is situated at one of the basal sites, not trans to the Fe---Fe vector. Oxidation of Fe(2)(S(2)C(2)H(4))(CNMe)(3)(CO)(3) under 1 atm CO gives the deep pink tricarbonyl [Fe(2)(S(2)C(2)H(4))(CO)(3)(CNMe)(4)](PF(6))(2). DFT calculations show that a bridging CO or MeNC establishes a 3-center, 2-electron bond within the two Fe(II) centers, which would otherwise be nonbonding.  相似文献   

14.
Dinitrosyl iron complex [(-SC(7)H(4)SN)(2)Fe(NO)(2)](-) (1) was prepared by reaction of [S(5)Fe(NO)(2)](-) and bis(2-benzothiozolyl) disulfide. In synthesis of the analogous dinitrosyl iron compounds (DNICs), the stronger electron-donating thiolates [RS](-) (R = C(6)H(4)-o-NHCOCH(3), C(4)H(3)S, C(6)H(4)NH(2), Ph), compared to [-SC(7)H(4)SN](-) of complex 1, trigger thiolate-ligand substitution to yield [(-SC(6)H(4)-o-NHCOCH(3))(2)Fe(NO)(2)](-) (2), [(-SC(4)H(3)S)(2)Fe(NO)(2)](-) (3), and [(SPh)(2)Fe(NO)(2)](-) (4), respectively. At 298 K, complexes 2 and 3 exhibit a well-resolved five-line EPR signal at g = 2.038 and 2.027, respectively, the characteristic g value of DNICs. The magnetic susceptibility fit indicates that the resonance hybrid of {Fe(+)((*)NO)(2)}(9) and {Fe(-)((+)NO)(2)}(9) in 2 is dynamic by temperature. The IR nu(NO) stretching frequencies (ranging from (1766, 1716) to (1737, 1693) cm(-)(1) (THF)) of complexes 1-4 signal the entire window of possible electronic configurations for such stable and isolable {Fe(NO)(2)}(9) [(RS)(2)Fe(NO)(2)](-). The NO-releasing ability of {Fe(NO)(2)}(9) [(RS)(2)Fe(NO)(2)](-) is finely tuned by the coordinated thiolate ligands. The less electron-donating thiolate ligands coordinated to {Fe(NO)(2)}(9) motif act as better NO-donor DNICs in the presence of NO-trapping agent [Fe(S,S-C(6)H(4))(2)](2)(2-). Interconversion between {Fe(NO)(2)}(9) [(RS)(2)Fe(NO)(2)](-) and {Fe(NO)(2)}(10) [(Ph(3)P)(2)Fe(NO)(2)] was verified in the reaction of (a) [(RS)(2)Fe(NO)(2)](-), 10 equiv of PPh(3) and sodium-biphenyl, and (b) 2 equiv of thiol, [RS](-), and [(Ph(3)P)(2)Fe(NO)(2)], respectively. The biomimetic reaction cycle, transformation between {Fe(NO)(2)}(9) [(RS)(2)Fe(NO)(2)](-) and {Fe(NO)(2)}(9) [(R'S)(2)Fe(NO)(2)](-), reversible interconversion of {Fe(NO)(2)}(9) and {Fe(NO)(2)}(10) DNICs, and degradation/reassembly of [2Fe-2S] clusters may decipher and predict the biological cycle of interconversion of {Fe(NO)(2)}(9) DNICs, {Fe(NO)(2)}(10) DNICs, and the [Fe-S] clusters in proteins.  相似文献   

15.
The infrared photodissociation spectra of [(CO(2))(n)(H(2)O)(m)](-) (n=1-4, m=1, 2) are measured in the 3000-3800 cm(-1) range. The [(CO(2))(n)(H(2)O)(1)](-) spectra are characterized by a sharp band around 3570 cm(-1) except for n=1; [(CO(2))(1)(H(2)O)(1)](-) does not photodissociate in the spectral range studied. The [(CO(2))(n)(H(2)O)(2)](-) (n=1, 2) species have similar spectral features with a broadband at approximately 3340 cm(-1). A drastic change in the spectral features is observed for [(CO(2))(3)(H(2)O)(2)](-), where sharp bands appear at 3224, 3321, 3364, 3438, and 3572 cm(-1). Ab initio calculations are performed at the MP2/6-311++G(**) level to provide structural information such as optimized structures, stabilization energies, and vibrational frequencies of the [(CO(2))(n)(H(2)O)(m)](-) species. Comparison between the experimental and theoretical results reveals rather size- and composition-specific hydration manner in [(CO(2))(n)(H(2)O)(m)](-): (1) the incorporated H(2)O is bonded to either CO(2) (-) or C(2)O(4) (-) through two equivalent OH...O hydrogen bonds to form a ring structure in [(CO(2))(n)(H(2)O)(1)](-); (2) two H(2)O molecules are independently bound to the O atoms of CO(2) (-) in [(CO(2))(n)(H(2)O)(2)](-) (n=1, 2); (3) a cyclic structure composed of CO(2) (-) and two H(2)O molecules is formed in [(CO(2))(3)(H(2)O)(2)](-).  相似文献   

16.
Many nonheme iron-dependent enzymes activate dioxygen to catalyze hydroxylations of arene substrates. Key features of this chemistry have been developed from complexes of a family of tetradentate tripodal ligands obtained by modification of tris(2-pyridylmethyl)amine (TPA) with single alpha-arene substituents. These included the following: -C(6)H(5) (i.e., 6-PhTPA), L(1); -o-C(6)H(4)D, o-d(1)-L(1); -C(6)D(5), d(5)-L(1); -m-C(6)H(4)NO(2), L(2); -m-C(6)H(4)CF(3), L(3); -m-C(6)H(4)Cl, L(4); -m-C(6)H(4)CH(3), L(5); -m-C(6)H(4)OCH(3), L(6); -p-C(6)H(4)OCH(3), L(7). Additionally, the corresponding ligand with one alpha-phenyl and two alpha-methyl substituents (6,6-Me(2)-6-PhTPA, L(8)) was also synthesized. Complexes of the formulas [(L(1))Fe(II)(NCCH(3))(2)](ClO(4))(2), [(L(n)())Fe(II)(OTf)(2)] (n = 1-7, OTf = (-)O(3)SCF(3)), and [(L(8))Fe(II)(OTf)(2)](2) were obtained and characterized by (1)H NMR and UV-visible spectroscopies and by X-ray diffraction in the cases of [(L(1))Fe(II)(NCCH(3))(2)](ClO(4))(2), [(L(6))Fe(II)(OTf)(2)], and [(L(8))Fe(II)(OTf)(2)](2). The complexes react with tert-butyl hydroperoxide ((t)()BuOOH) in CH(3)CN solutions to give iron(III) complexes of ortho-hydroxylated ligands. The product complex derived from L(1) was identified as the solvated monomeric complex [(L(1)O(-))Fe(III)](2+) in equilibrium with its oxo-bridged dimer [(L(1)O(-))(2)Fe(III)(2)(mu(2)-O)](2+), which was characterized by X-ray crystallography as the BPh(4)(-) salt. The L(8) product was also an oxo-bridged dimer, [(L(8)O(-))(2)Fe(III)(2)(mu(2)-O)](2+). Transient intermediates were observed at low temperature by UV-visible spectroscopy, and these were characterized as iron(III) alkylperoxo complexes by resonance Raman and EPR spectroscopies for L(1) and L(8). [(L(1))Fe(II)(OTf)(2)] gave rise to a mixture of high-spin (S = 5/2) and low-spin (S = 1/2) Fe(III)-OOR isomers in acetonitrile, whereas both [(L(1))Fe(OTf)(2)] in CH(2)Cl(2) and [(L(8))Fe(OTf)(2)](2) in acetonitrile afforded only high-spin intermediates. The L(1) and L(8) intermediates both decomposed to form respective phenolate complexes, but their reaction times differed by 3 orders of magnitude. In the case of L(1), (18)O isotope labeling indicated that the phenolate oxygen is derived from the terminal peroxide oxygen via a species that can undergo partial exchange with exogenous water. The iron(III) alkylperoxo intermediate is proposed to undergo homolytic O-O bond cleavage to yield an oxoiron(IV) species as an unobserved reactive intermediate in the hydroxylation of the pendant alpha-aryl substituents. The putative homolytic chemistry was confirmed by using 2-methyl-1-phenyl-2-propyl hydroperoxide (MPPH) as a probe, and the products obtained in the presence and in the absence of air were consistent with formation of alkoxy radical (RO(*)). Moreover, when one ortho position was labeled with deuterium, no selectivity was observed between hydroxylation of the deuterated and normal isotopomeric ortho sites, but a significant 1,2-deuterium shift ("NIH shift") occurred. These results provide strong mechanistic evidence for a metal-centered electrophilic oxidant, presumably an oxoiron(IV) complex, in these arene hydroxylations and support participation of such a species in the mechanisms of the nonheme iron- and pterin-dependent aryl amino acid hydroxylases.  相似文献   

17.
Isoelectronic oxo-bridged diiron(III) aquo complexes of the homologous tripodal tetradentate amino acid ligands, N,N'-bis(2-pyridylmethyl)-3-aminoacetate (bpg(-)) and N,N'-bis(2-pyridylmethyl)-3-aminopropionate (bpp(-)), containing [(H(2)O)Fe(III)-(mu-O)-Fe(III)(H(2)O)](4+) cores, oligomerise, respectively, by dehydration and deprotonation, or by dehydration only, in reversible reactions. In the solid state, [Fe(2)(O)(bpp)(2)(H(2)O)(2)](ClO(4))(2) (1(ClO(4))(2)) exhibits stereochemistry identical to that of [Fe(2)(O)(bpg)(2)(H(2)O)(2)](ClO(4))(2) (2(ClO(4))(2)), with the ligand carboxylate donor oxygen atoms and the water molecules located cis to the oxo bridge and the tertiary amine group trans to it. Despite their structural similarity, 1(2+) and 2(2+) display markedly different aggregation behaviour in solution. In the absence of significant water, 1(2+) dehydrates and dimerises to give the tetranuclear complex, [Fe(4)(O)(2)(bpp)(4)](ClO(4))(4) (3(ClO(4))(4)), in which the carboxylate groups of the four bpp(-) ligands act as bridging groups between two [Fe(2)(O)(bpp)(2)](2+) units. Under similar conditions, 2(2+) dehydrates and deprotonates to form dinuclear and trinuclear oligomers, [Fe(2)(O)(OH)(bpg)(2)](ClO(4)) (4ClO(4)) and [Fe(3)(O)(2)(OH)(bpg)(3)](ClO(4)) (5(ClO(4))), related by addition of 'Fe(O)(bpg)' units. The trinuclear 5(ClO(4)), characterised crystallographically as two solvates 5(ClO(4)).3H(2)O and 5(ClO(4)).2MeOH, is based on a hexagonal [Fe(3)(O)(2)(OH)(bpg)(3)](+) unit, formally containing one hydroxo and two oxo bridges. The different aggregation behaviour of 1(ClO(4))(2) and 2(ClO(4))(2) results from the difference of one methylene group in the pendant carboxylate arms of the amino acid ligands.  相似文献   

18.
The synthesis of a penta(1-methylpyrazole)ferrocenyl phosphine oxide ligand (1) [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))] is reported together with its X-ray crystal structure. Its self-assembly behavior with a dirhodium(II) tetraoctanoate linker (2) [Rh(2)(O(2)CC(7)H(15))(4)] was investigated for construction of fullerene-like assemblies of composition [(ligand)(12)(linker)(30)]. Reaction between 1 and 2 in acetonitrile resulted in the formation of a light purple precipitate (3). Evidence for the ligand-to-linker ratio of 1:2.5 expected for a fullerene-like structure [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))](12)[Rh(2)(O(2)CC(7)H(15))(4)](30) was obtained from (1)H NMR and elemental analysis. IR and Raman studies confirmed the diaxially bound coordination environment of the dirhodium linker by comparing the stretching frequencies of the carboxylate group and the rhodium-rhodium bond with those in model compound (5), [Rh(2)(O(2)CC(7)H(15))(4)](C(3)H(3)N(2)CH(3))(2), the bis-adduct of linker 2 with 1-methylpyrazole. X-ray powder diffraction and molecular modeling studies provide additional support for the formation of a spherical molecule topologically identical to fullerene with a diameter of approximately 38 ? and a molecular formula of [(1)(12)(2)(30)]. Dissolution of 3 in tetrahydrofuran (THF) followed by layering with acetonitrile afforded purple crystals of [(1)(2)(2)](∞) (6) [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))][Rh(2)(O(2)CC(7)H(15))(4)](2) with a two-dimensional polymeric structure determined by X-ray crystallography. The dirhodium linkers link ferrocenyl units by coordination to the pyrazoles but only four of the five pyrazole moieties of the pentapyrazole ligand are coordinated. The ligand-to-linker ratio of 1:2 in 6 was confirmed by (1)H NMR spectroscopy and elemental analysis, while results from IR and Raman are in agreement with the diaxially coordinated environment of the linker observed in the solid state.  相似文献   

19.
Reaction of RuCl(2)(PPh(3))(3) with S(2)(-) sources yields a family of phosphine-containing Ru-S clusters which have been characterized crystallographically and by MALDI-MS. Ru(4)S(6)(PPh(3))(4) (Ru-Ru(av) = 2.94 A) has idealized T(d)() symmetry whereas Ru(6)S(8)(PPh(3))(6) (Ru-Ru(av) = 2.82 A) adopts the idealized O(h)() symmetry characteristic of Chevrel clusters. Ru(5)S(6)(PPh(3))(5) is formally derived by the addition of Ru(PPh(3)) to one face of Ru(4)S(6)(PPh(3))(4). In terms of its M-S connectivity, the Ru(5)S(6) cluster resembles a fragment of the FeMo cluster in nitrogenase.  相似文献   

20.
The reactions of the hydroxo complexes [M(2)R(4)(mu-OH)(2)](2)(-) (M = Pd, R = C(6)F(5), C(6)Cl(5); M = Pt, R = C(6)F(5)), [[PdR(PPh(3))(mu-OH)](2)] (R = C(6)F(5), C(6)Cl(5)), and [[Pt(C(6)F(5))(2)](2)(mu-OH)(mu-pz)](2-) (pz = pyrazolate) with H(2)S yield the corresponding hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-), [[PdR(PPh(3))(mu-SH)](2)], and [[Pt(C(6)F(5))(2)](2)(mu-SH)(mu-pz)](2-), respectively. The monomeric hydrosulfido complexes [M(C(6)F(5))(2)(SH)(PPh(3))](-) (M = Pd, Pt) have been prepared by reactions of the corresponding binuclear hydrosulfido complexes [M(2)(C(6)F(5))(4)(mu-SH)(2)](2-) with PPh(3) in the molar ratio 1:2, and they can be used as metalloligands toward Ag(PPh(3))(+) to form the heterodinuclear complex [(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and toward Au(PPh(3))(+) yielding the heterotrinuclear complexes [M(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]]. The crystal structures of [NBu(4)](2)[[Pt(C(6)F(5))(2)(mu-SH)](2)], [Pt(C(6)F(5))(2)(PPh(3))[S(H)AgPPh(3)]], and [Pt(C(6)F(5))(2)(PPh(3))[S(AuPPh(3))(2)]] have been established by X-ray diffraction and show no short metal-metal interactions between the metallic centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号