首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A general asymmetric Strecker-type reaction is reported, catalyzed by the Lewis acid-Lewis base bifunctional catalyst 1. The reaction of trimethylsilyl cyanide (TMSCN) with various fluorenyl imines, including n-aldimines and alpha,beta-unsaturated imines, proceeds with good to excellent enantioselectivities in the presence of a catalytic amount of phenol as additive (20 mol%) (catalytic system 1). The products were successfully converted to the corresponding amino acid derivatives in high yields without loss of enantiomeric purity. Furthermore, hydrogenation or dihydroxylation of the products from alpha,beta-unsaturated imines afforded saturated or functionalized aminonitriles also without loss of enantiomeric purity. The absolute configuration of the products and a control experiment using catalyst 2 supported the proposed dual activation of the imine and TMSCN by the Lewis acid (Al) and the Lewis base moiety (phosphine oxide) of 1. From the mechanistic studies including kinetic and NMR experiments of the catalytic species, the role of PhOH seems to be a proton source to protonate the anionic nitrogen of the intermediate. Specifically, we have found that TMSCN is more reactive than HCN in this catalytic system, probably due to the activation ability of the phosphine oxide moiety of 1 toward TMSCN. This fact prompted us to develop the novel catalytic system 2, consisting of 1 (9 mol%), TMSCN (20 mol%) and HCN (1.2 mol eq). This new system afforded comparable results with obtained by system 1 (1 (9 mol%)-TMSCN (2 mol eq)-PhOH (20 mol%)).  相似文献   

2.
A new family of bifunctional catalysts (N-oxides-Ti(OiPr)4 (2:1)) containing a Lewis acid and a Lewis base was developed and applied to the catalytic cyanosilylation of ketones. Utilizing rac((1R,2S) and (1S,2R))-1-(2′-pyridylmethyl)-2-diphenylhydroxymethylpyrrolidine N-oxide-titanium (2:1) complex and N-benzyl-diethanolamine N-oxide-titanium (2:1) complex as catalysts, the cyanosilylation products were obtained in 42-97% yield. Based on experimental phenomena and kinetic studies, a catalytic cycle was proposed to explain the remarkable activities of these catalysts. Investigations indicated that rac((1R,2S) and (1S,2R))-1-(2′-pyridylmethyl)-2-diphenylhydroxymethylpyrrolidine N-oxide-titanium (2:1) complex and N-benzyl-diethanolamine N-oxide-titanium (2:1) complex should promote the reaction via a dual activation of the ketone by the titanium and TMSCN by the N-oxide.  相似文献   

3.
The first catalytic enantioselective Reissert reaction of pyridine derivatives that affords products with excellent regio- and enantioselectivity is described. The key for success is the development of new Lewis acid-Lewis base bifunctional asymmetric catalysts containing an aluminum as a Lewis acid and sulfoxides or phosphine sulfides as a Lewis base. These reactions are useful for the synthesis of a variety of chiral piperidine subunits, and catalytic enantioselective formal synthesis of CP-293,019, a selective D4 receptor antagonist, was achieved. Preliminary mechanistic studies indicated that both sulfoxides and phosphine sulfides can activate TMSCN as a Lewis base. In addition, the sulfoxides with appropriate stereochemistry might stabilize a highly enantioselective bimetallic complex (a presumed active catalyst) through internal coordination to aluminum.  相似文献   

4.
Guo Y  Li S 《Inorganic chemistry》2008,47(14):6212-6219
Density functional theory calculations have been carried out to investigate the possible reaction mechanisms for the reversible dihydrogen activation catalyzed by a phosphine-borane compound, (C6H2Me3)2P(C6F4)B(C6F5)2 (Welch, G. C.; Juan, R. R. S; Masuda, J. D.; Stephan, D. W. Science. 2006, 314, 1124-1126). The present calculations show that an unusual concerted Lewis acid-Lewis base mechanism is more favorable than the proton transfer or hydride transfer mechanisms suggested previously. In the concerted Lewis acid-Lewis base mechanism, the H-H heterolytic cleavage is achieved through the simultaneous electron transfer from the lone-pair orbital of the Lewis base P center to the sigma* orbital of H2 and from the sigma orbital of H2 to the empty orbital of the Lewis acid B center. The solvent is found to dramatically change the potential energy surface. The proposed mechanism can account well for the bimolecular H-D exchange process observed in deuteration experiments and the experimental fact that the H2 activation is reversible at mild conditions.  相似文献   

5.
Tiseni PS  Peters R 《Organic letters》2008,10(10):2019-2022
A complex formed in situ from Er(OTf)3 and a simple commercially available norephedrine ligand promotes an unprecedented [4 + 2] cycloaddition of alpha,beta-unsaturated acid chlorides with a broad range of aromatic and heteroaromatic aldehydes by a cooperative bifunctional Lewis acid-Lewis base catalytic mode of action providing valuable delta-lactone building blocks with excellent enantioselectivity.  相似文献   

6.
New chiral ligands for asymmetric polymetallic catalysts were designed on the basis of the assumption that the higher-order assembly structure is stabilized by modifying the modular unit. The designed ligands 6 and 7 contained a scaffolding cyclohexane ring with a Lewis base phosphine oxide directly attached to the scaffold. A module in the polymetallic complex contains two metals per ligand, and a stable 6-, 5-, 5-membered fused chelation ring system should be generated. Synthesis of these ligands is simple and high yielding, using a catalytic dynamic kinetic resolution promoted by the Trost catalyst as a key step. Ligand function was assessed in a catalytic asymmetric ring-opening reaction of meso-aziridines with TMSCN, a useful reaction for the synthesis of optically active beta-amino acids. The Gd complex generated from Gd(OiPr)3 and the ligand was a highly active and enantioselective catalyst in this reaction. Enantioselectivity was reversed compared to the previously reported d-glucose-derived catalyst containing the same chirality of the individual module. ESI-MS analysis and X-ray crystallographic studies indicate that the assembly state of the modules in the polymetallic catalysts differs depending on the chiral ligand. The difference in the higher-order structure stems from a subtle change (one carbon) in the position of the Lewis base relative to the Gd metal. The change in the higher-order structure of the polymetallic complex led to a dramatic reversal of the enantioselectivity and increased catalyst activity.  相似文献   

7.
8.
Three new complexes, namely {Ag2(Hmbbc)2(SO3CF3)2}n (1), Ag2(Hmbbc)2(NO3)2(DMF)2(CH3OH) (2), and Hg2(Hmbbc)2(I)4(DMF)2 (3) were constructed by the reaction of 4′-[4-methyl-6-(1-methyl-1H-benzimidazolyl-l-2-group)-2-n-propyl-1H-benzimidazolyl methyl]-biphenyl-2-carboxylic acid (Hmbbc) with Ag(I) or Hg(II) salts under solvothermal or solution reactions. In the complexes, the Hmbbc ligand exhibits different coordination modes, giving various crystal architectures. X-ray analysis demonstrates that 1 has a 2D layer structure, while 2 and 3 are binuclear. All three complexes are further extended into 3D supramolecular architectures through hydrogen bonds and π···π interactions. They exhibit luminescence emission in the solid state at room temperature.  相似文献   

9.
A new bifunctional catalyst consisting of active palladium and osmium species anchored on silica gel through a mercaptopropyl spacer and a cinchona alkaloid respectively has been prepared for the first time and used in the heterogeneous tandem Heck-asymmetric dihydroxylation of olefins to afford diols with excellent yields and enantiomeric excesses (ee's) in presence of N-methylmorpholine N-oxide or K3Fe(CN)6 as cooxidants.  相似文献   

10.
Bifunctional catalysts can drastically improve the efficiency of asymmetric processes with respect to enantioselectivity and/or conversion rate. A new type of chiral bifunctional catalyst has been developed recently in the Shibasaki group that contains both Lewis acid and Lewis base moieties. These monometallic and bifunctional phosphinoyl-containing catalysts are able to coordinate both nucleophilic and electrophilic substrates in the transition state. Several successful applications of this new catalytic concept in the field of asymmetric cyanation reactions have already been reported, for example, the asymmetric hydrocyanation of aldehydes and imines as well as the asymmetric Reissert reaction. The development and principle of this catalytic concept as well as main applications thereof are reviewed in this article.  相似文献   

11.
Dual activation by a chiral Lewis acid and an achiral or chiral Lewis base enabled cyanation of both aromatic and aliphatic aldehydes with acetyl cyanide and ethyl cyanoformate to provide direct access to O-acetylated and O-alkoxycarbonylated cyanohydrins, respectively, under mild conditions. With a combination of a Ti-salen catalyst and Et3N, benzaldehyde was converted to the O-acetylated cyanohydrin with 94% ee within 10 h at -40 degrees C in 89% isolated yield.  相似文献   

12.
The design, synthesis, and study of a helical dialkylaminopyridine Lewis base catalyst is reported. Helical DMAP analogue 4 is based upon a helicenoid structure and displays good to excellent levels of selectivity (S ≤ 116) in the kinetic resolution of chiral secondary alcohols. Catalyst 4 displays excellent reactivity with exceptionally low loadings of 0.05 mol % effecting practical levels of selectivity in kinetic resolutions.  相似文献   

13.
The concept of Lewis base activation of Lewis acids has been applied to the selenolactonization reaction. Through the use of substoichiometric amounts of Lewis bases with "soft" donor atoms (S, Se, P) significant rate enhancements over the background reaction are seen. Preliminary mechanistic investigations have revealed the resting state of the catalyst as well as the significance of a weak Br?nsted acid promoter.  相似文献   

14.
A bis(imino)acenaphthene (BIAN) ligand containing a pendant Lewis base has been used as a new framework to support a N-heterocyclic phosphenium cation (NHP). Reactivity studies demonstrate the ability of the ligand to act as a Lewis base, while the phosphorus centre provides a Lewis acidic site, giving new opportunities in NHP chemistry.  相似文献   

15.
A chiral ammonium betaine, an intramolecular ion-pairing quaternary ammonium aryloxide 3, has been designed and its vast potential as an enantioselective organic base catalyst has been successfully demonstrated in the highly enantioselective direct Mannich-type reaction of alpha-substituted alpha-nitrocarboxylates 2 with various N-Boc imines 1. The present study provides a conceptually new approach toward the design of bifunctional, chiral quaternary ammonium salts and their utilizations as a homogeneous organic molecular catalyst.  相似文献   

16.
The synthesis and characterisation of a new highly active Hoveyda-Grubbs 2nd generation type catalyst is described. Substitution of one chloride ligand with a partially fluorinated trialkoxysilyl substituted carboxylate leads to the stable monocarboxylate ruthenium catalyst (3). This catalyst represents the first example of a stable and isolable mono-chloride exchanged carboxylate complex suitable for both homogeneous and heterogeneous metathesis. The reactivity of the new catalyst was tested in representative metathesis reactions and offers an activity comparable to the parent dichloride system (1).  相似文献   

17.
Chiral building block syntheses of promising drugs were achieved using two types of catalytic stereoselective cyanosilylations of aldehydes promoted by Lewis acid-Lewis base bifunctional catalysts 1 and 2 as the key steps (diastereoselective cyanosilylation of amino aldehyde and enantioselective cyanosilylation). In the first part of this article, syntheses of chiral building blocks (6) of Atazanavir (3: human immunodeficiency virus (HIV) protease inhibitor) using the bifunctional catalyst 2 are discussed. The reaction of Boc-protected phenylalaninal 21 in the presence of 1 mol% catalyst 2 selectively afforded the anti isomer 22 as the major product (diastereomeric ratio=97 : 3), which was successively converted to the corresponding epoxide 6 in six steps. In the second part, we describe a chiral building block synthesis of beta(3)-adrenergic receptor agonists. The enantioselective cyanosilylation of 3-chlorobenzaldehyde (38) with 9 mol% catalyst 1 gave the chiral cyanohydrin 39, which was converted to beta-hydroxyethylamine 40 by reduction. Moreover, the chiral ligand of catalyst 1 could be recovered without column chromatography and reused without decreasing its activity.  相似文献   

18.
Alternating copolymerization of propylene oxide (PO) and carbon dioxide (CO2) was realized under mild conditions with a moderate turnover frequency (TOF), employing sole bifunctional cobalt salen complexes containing Lewis acid metal center and covalent bonded Lewis base on the ligand. Variation of the covalent bonded Lewis base substituents on the salen ligands could tailor the catalytic activity with TOF changing from 19.3 to 34.9 h?1, polymeric/cyclic carbonate selectivity from 95.3 to 72.8%, and the head‐to‐tail structure in the polymer from 72.2 to 86.0%. The IR analysis confirmed that the Lewis base moiety on one molecule could coordinate with cobalt center of adjacent molecule, playing similar role to the Salen metal complex/Lewis base binary catalytic system. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 359–365, 2010  相似文献   

19.
A new Schiff base ligand (HL) was prepared via a condensation reaction of quinoline‐2‐carboxaldhyde with 2‐aminophenol in a molar ratio of 1:1. Its transition metal mixed ligand complexes with 1,10‐phenanthroline (1,10‐phen) as co‐ligand were also synthesized in a 1:1:1 ratio. HL and its mixed ligand complexes were characterized using elemental analysis, infrared, 1H NMR, mass and UV–visible spectroscopies, molar conductance, magnetic measurements, solid reflectance, thermal analysis, electron spin resonance and X‐ray diffraction. Molar conductance measurements showed that all complexes have an electrolytic nature, except Cd(II) complex. From elemental and spectral data, the formulae [M(L)(1,10‐phen)(H2O)]Clx?nH2O (where M = Cr(III) (x = n = 2), Mn(II) and Ni(II) (x = 1, n = 2), Fe(III) (x = n = 2), Co(II), Cu(II) and Zn(II) (x = 1, n = 2)) and [Cd(L)(1,10‐phen)Cl]?3H2O for the metal complexes have been proposed. The geometric structures of complexes were found to be octahedral. Powder X‐ray diffraction reflected the crystalline nature of the complexes; however, the Schiff base is amorphous. HL and its mixed ligand complexes were screened against Gram‐positive bacteria (Streptococcus pneumoniae and Bacillus subtilis) and Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli). Antifungal activity was determined against Aspergillus fumigatus and Candida albicans, the data showing that most complexes had activity less than that of the Schiff base while Mn(II), Fe(III) and Ni(II) complexes showed no significant antifungal activity. The anticancer activity of HL and its metal complexes was also studied against breast and colon cell lines. The metal complexes showed IC50 higher than that of HL, especially the Cu(II) complex which showed the highest IC50 against breast cell line.  相似文献   

20.
In the presence of CaCl2, dimethylsilyl (DMS) enolates smoothly reacted with aldehydes under mild conditions to give aldol adducts in good to high yields. The catalytic activities of various metal and tetrabutylammonium salts have revealed that CaCl2 works as a Lewis base catalyst to activate DMS enolates. The CaCl2-promoted reaction proceeded even in the presence of water or in pure water. This catalytic system was applicable to the aldol reaction with aqueous aldehydes such as formalin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号