首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary. We discuss a finite difference preconditioner for the interpolatory cubic spline collocation method for a uniformly elliptic operator defined by in (the unit square) with homogeneous Dirichlet boundary conditions. Using the generalized field of values arguments, we discuss the eigenvalues of the preconditioned matrix where is the matrix of the collocation discretization operator corresponding to , and is the matrix of the finite difference operator corresponding to the uniformly elliptic operator given by in with homogeneous Dirichlet boundary conditions. Finally we mention a bound of -singular values of for a general elliptic operator in . Received December 11, 1995 / Revised version received June 20, 1996  相似文献   

2.
In this paper we consider second order scalar elliptic boundary value problems posed over three–dimensional domains and their discretization by means of mixed Raviart–Thomas finite elements [18]. This leads to saddle point problems featuring a discrete flux vector field as additional unknown. Following Ewing and Wang [26], the proposed solution procedure is based on splitting the flux into divergence free components and a remainder. It leads to a variational problem involving solenoidal Raviart–Thomas vector fields. A fast iterative solution method for this problem is presented. It exploits the representation of divergence free vector fields as s of the –conforming finite element functions introduced by Nédélec [43]. We show that a nodal multilevel splitting of these finite element spaces gives rise to an optimal preconditioner for the solenoidal variational problem: Duality techniques in quotient spaces and modern algebraic multigrid theory [50, 10, 31] are the main tools for the proof. Received November 4, 1996 / Revised version received February 2, 1998  相似文献   

3.
Discretizing a symmetric elliptic boundary value problem by a finite element method results in a system of linear equations with a symmetric positive definite coefficient matrix. This system can be solved iteratively by a preconditioned conjugate gradient method. In this paper a preconditioning matrix is proposed that can be constructed for all finite element methods if a mild condition for the node numbering is fulfilled. Such a numbering can be constructed using a variant of the reverse Cuthill-McKee algorithm.  相似文献   

4.
Overlapping Schwarz preconditioners are constructed and numerically studied for Gauss-Lobatto-Legendre (GLL) spectral element discretizations of heterogeneous elliptic problems on nonstandard domains defined by Gordon-Hall transfinite mappings. The results of several test problems in the plane show that the proposed preconditioners retain the good convergence properties of overlapping Schwarz preconditioners for standard affine GLL spectral elements, i.e. their convergence rate is independent of the number of subdomains, of the spectral degree in the case of generous overlap and of the discontinuity jumps in the coefficients of the elliptic operator, while in the case of small overlap, the convergence rate depends on the inverse of the overlap size.  相似文献   

5.
Summary This work deals with theH 1 condition numbers and the distribution of theB h singular values of the preconditioned operators {B h –1 A h }0, whereA h andB h are finite element discretizations of second order elliptic operators,A andB respectively.B is also assumed to be self-adjoint and positive definite. For conforming finite elements, Parter and Wong have shown that the singular values cluster in a positive finite interval. Goldstein also has derived results on the spectral distribution ofB h –1 A h using a different approach. As a generalization of the results of Parter and Wong, the current work includes nonconforming finite element methods which deal with Dirichlet boundary conditions. It will be shown that, in this more general setting, the singular values also cluster in a positive finite interval. In particular, if the leading part ofB is the same as the leading part ofA, then the singular values cluster about the point {1}. Two specific methods are given as applications of this theory. They are the penalty method of Babuka and the method of nearly zero boundary conditions of Nitsche. Finally, it will be shown that the same results can be proven by an approach generalized from the work of Goldstein.This research was supported by the National Science Foundation under grant number DMS-8913091.  相似文献   

6.
Two-grid finite volume element discretization techniques, based on two linear conforming finite element spaces on one coarse and one fine grid, are presented for the two-dimensional second-order non-selfadjoint and indefinite linear elliptic problems and the two-dimensional second-order nonlinear elliptic problems. With the proposed techniques, solving the non-selfadjoint and indefinite elliptic problem on the fine space is reduced into solving a symmetric and positive definite elliptic problem on the fine space and solving the non-selfadjoint and indefinite elliptic problem on a much smaller space; solving a nonlinear elliptic problem on the fine space is reduced into solving a linear problem on the fine space and solving the nonlinear elliptic problem on a much smaller space. Convergence estimates are derived to justify the efficiency of the proposed two-grid algorithms. A set of numerical examples are presented to confirm the estimates. The work is supported by the National Natural Science Foundation of China (Grant No: 10601045).  相似文献   

7.
On the multi-level splitting of finite element spaces   总被引:13,自引:0,他引:13  
Summary In this paper we analyze the condition number of the stiffness matrices arising in the discretization of selfadjoint and positive definite plane elliptic boundary value problems of second order by finite element methods when using hierarchical bases of the finite element spaces instead of the usual nodal bases. We show that the condition number of such a stiffness matrix behaves like O((log )2) where is the condition number of the stiffness matrix with respect to a nodal basis. In the case of a triangulation with uniform mesh sizeh this means that the stiffness matrix with respect to a hierarchical basis of the finite element space has a condition number behaving like instead of for a nodal basis. The proofs of our theorems do not need any regularity properties of neither the continuous problem nor its discretization. Especially we do not need the quasiuniformity of the employed triangulations. As the representation of a finite element function with respect to a hierarchical basis can be converted very easily and quickly to its representation with respect to a nodal basis, our results mean that the method of conjugate gradients needs onlyO(log n) steps andO(n log n) computer operations to reduce the energy norm of the error by a given factor if one uses hierarchical bases or related preconditioning procedures. Heren denotes the dimension of the finite element space and of the discrete linear problem to be solved.  相似文献   

8.
The paper is concerned with the study of an elliptic boundary value problem with a nonlinear Newton boundary condition. The existence and uniqueness of the solution of the continuous problem is established with the aid of the monotone operator theory. The main attention is paid to the investigation of the finite element approximation using numerical integration for the computation of nonlinear boundary integrals. The solvability of the discrete finite element problem is proved and the convergence of the approximate solutions to the exact one is analysed. Received April 15, 1996 / Revised version received November 22, 1996  相似文献   

9.
A preconditioned conjugate gradient method is applied to finite element discretizations of some nonsymmetric elliptic systems. Mesh independent superlinear convergence is proved, which is an extension of a similar earlier result from a single equation to systems. The proposed preconditioning method involves decoupled preconditioners, which yields small and parallelizable auxiliary problems.  相似文献   

10.
Summary. In this paper we study a symmetric boundary element method based on a hybrid discretization of the Steklov–Poincaré operator well suited for a symmetric coupling of finite and boundary elements. The representation used involves only single and double layer potentials and does not require the discretization of the hypersingular integral operator as in the symmetric formulation. The stability of the hybrid Galerkin discretization is based on a BBL–like stability condition for the trial spaces. Numerical examples confirm the theoretical results. Received December 15, 1997 / Revised version received December 21, 1998/ Published online November 17, 1999  相似文献   

11.
A cascadic multigrid algorithm for semilinear elliptic problems   总被引:12,自引:0,他引:12  
Summary. We propose a cascadic multigrid algorithm for a semilinear elliptic problem. The nonlinear equations arising from linear finite element discretizations are solved by Newton's method. Given an approximate solution on the coarsest grid on each finer grid we perform exactly one Newton step taking the approximate solution from the previous grid as initial guess. The Newton systems are solved iteratively by an appropriate smoothing method. We prove that the algorithm yields an approximate solution within the discretization error on the finest grid provided that the start approximation is sufficiently accurate and that the initial grid size is sufficiently small. Moreover, we show that the method has multigrid complexity. Received February 12, 1998 / Revised version received July 22, 1999 / Published online June 8, 2000  相似文献   

12.
Summary In this paper we discuss bounds for the convergence rates of several domain decomposition algorithms to solve symmetric, indefinite linear systems arising from mixed finite element discretizations of elliptic problems. The algorithms include Schwarz methods and iterative refinement methods on locally refined grids. The implementation of Schwarz and iterative refinement algorithms have been discussed in part I. A discussion on the stability of mixed discretizations on locally refined grids is included and quantiative estimates for the convergence rates of some iterative refinement algorithms are also derived.Department of Mathematics, University of Wyoming, Laramie, WY 82071-3036. This work was supported in part by the National Science Foundation under Grant NSF-CCR-8903003, while the author was a graduate student at New York University, and in part by NSF Grant ASC 9003002, while the author was a Visiting, Assistant Researcher at UCLA.  相似文献   

13.
Summary A uniform framework for the study of upwinding schemes is developed. The standard finite element Galerkin discretization is chosen as the reference discretization, and differences between other discretization schemes and the reference are written as artificial diffusion terms. These artificial diffusion terms are spanned by a four dimensional space of element diffusion matrices. Three basis matrices are symmetric, rank one diffusion operators associated with the edges of the triangle; the fourth basis matrix is skew symmetric and is associated with a rotation by /2. While finite volume discretizations may be written as upwinded Galerkin methods, the converse does not appear to be true. Our approach is used to examine several upwinding schemes, including the streamline diffusion method, the box method, the Scharfetter-Gummel discretization, and a divergence-free scheme.The work of this author was supported by the Office of Naval Research under contract N00014-89J-1440The work of this author was supported through KWF-Landis/Gyr Grant 1496, AT & T Bell Laboratories, and Cray Research  相似文献   

14.
Preconditioned conjugate gradient method is applied for solving linear systemsAx=b where the matrixA is the discretization matrix of second-order elliptic operators. In this paper, we consider the construction of the trnasform based preconditioner from the viewpoint of image compression. Given a smooth image, a major portion of the energy is concentrated in the low frequency regions after image transformation. We can view the matrixA as an image and construct the transform based preconditioner by using the low frequency components of the transformed matrix. It is our hope that the smooth coefficients of the given elliptic operator can be approximated well by the low-rank matrix. Numerical results are reported to show the effectiveness of the preconditioning strategy. Some theoretical results about the properties of our proposed preconditioners and the condition number of the preconditioned matrices are discussed.  相似文献   

15.
The article deals with Galerkin matrices arising with finite element discretizations of the Navier–Stokes system. Usually these matrices are indefinite and nonsymmetric. They have to be preconditioned if a related linear system is to be solved efficiently by an iterative method. We consider preconditioning by a pressure mass matrix. It is shown how upper and lower bounds of the eigenvalues of a preconditioned Galerkin matrix may be found by variational arguments.  相似文献   

16.
Summary The finite element discretization of many elliptic boundary value problems leads to linear systems with positive definite and symmetric coefficient matrices. Many efficient preconditioners are known for these systems. We show that these preconditioning matrices can also be used for the linear systems arising from boundary value problems which are potentially indefinite due to lower order terms in the partial differential equation. Our main tool is a careful algebraic analysis of the condition numbers and the spectra of perturbed matrices which are preconditioned by the same matrices as in the unperturbed case.  相似文献   

17.
Summary. We develop and analyze a procedure for creating a hierarchical basis of continuous piecewise linear polynomials on an arbitrary, unstructured, nonuniform triangular mesh. Using these hierarchical basis functions, we are able to define and analyze corresponding iterative methods for solving the linear systems arising from finite element discretizations of elliptic partial differential equations. We show that such iterative methods perform as well as those developed for the usual case of structured, locally refined meshes. In particular, we show that the generalized condition numbers for such iterative methods are of order , where is the number of hierarchical basis levels. Received December 5, 1994  相似文献   

18.
Summary We consider mixed finite element approximations of the stationary, incompressible Navier-Stokes equations with slip boundary condition simultaneously approximating the velocity, pressure, and normal stress component. The stability of the schemes is achieved by adding suitable, consistent penalty terms corresponding to the normal stress component and to the pressure. A new method of proving the stability of the discretizations allows, us to obtain optimal error estimates for the velocity, pressure, and normal stress component in natural norms without using duality arguments and without imposing uniformity conditions on the finite element partition. The schemes can easily be implemented into existing finite element codes for the Navier-Stokes equations with standard Dirichlet boundary conditions.  相似文献   

19.
Summary For solving second order elliptic problems discretized on a sequence of nested mixed finite element spaces nearly optimal iterative methods are proposed. The methods are within the general framework of the product (multiplicative) scheme for operators in a Hilbert space, proposed recently by Bramble, Pasciak, Wang, and Xu [5,6,26,27] and make use of certain multilevel decomposition of the corresponding spaces for the flux variable.  相似文献   

20.
Summary We describe sequential and parallel algorithms based on the Schwarz alternating method for the solution of mixed finite element discretizations of elliptic problems using the Raviart-Thomas finite element spaces. These lead to symmetric indefinite linear systems and the algorithms have some similarities with the traditional block Gauss-Seidel or block Jacobi methods with overlapping blocks. The indefiniteness requires special treatment. The sub-blocks used in the algorithm correspond to problems on a coarse grid and some overlapping subdomains and is based on a similar partition used in an algorithm of Dryja and Widlund for standard elliptic problems. If there is sufficient overlap between the subdomains, the algorithm converges with a rate independent of the mesh size, the number of subdomains and discontinuities of the coefficients. Extensions of the above algorithms to the case of local grid refinement is also described. Convergence theory for these algorithms will be presented in a subsequent paper.This work was supported in part by the National Science Foundation under Grant NSF-CCR-8903003, while the author was a graduate student at New York University, and in part by the Army Research Office under Grant DAAL 03-91-G-0150, while the author was a Visiting Assistant Researcher at UCLA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号