首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The N-heterocyclic stannylenes [{Fe(η5-C5H4-NSitBuMe2)2}Sn] ( 1 ) and [o-C6H4(NSitBuMe2)2]Sn ( 2 ) were prepared in one-pot reactions from SnCl2, LiN(SiMe3)2, and the corresponding diamine, viz. [Fe(η5-C5H4-NHSitBuMe2)2] and o-C6H4(NSiHtBuMe2)2, respectively. Oxidative addition reactions of 1 and 2 with S8 and Se8, respectively, afforded the corresponding 1,3,2,4-dithiadistannetanes (( 1 S)2, ( 2 S)2), and 1,3,2,4-diselenadistannetanes [( 1 Se)2, ( 2 Se)2]. The reactions of 1 and 2 with PhSeSePh respectively furnished 1 (SePh)2 and 2 (SePh)2. The crystal structures of o-C6H4(NSiHtBuMe2)2, 1 , 2 , ( 1 S)2, ( 2 S)2, ( 1 Se)2, ( 2 Se)2, 1 (SePh)2, and 2 (SePh)2 were determined by single-crystal X-ray diffraction. Stannylene 2 shows a chain-like aggregation in the solid state due to intermolecular Sn ··· arene interactions. A short intramolecular CH ··· Se contact compatible with a hydrogen bond was observed for ( 1 Se)2.  相似文献   

2.
Pincer‐type palladium complexes are among the most active Heck catalysts. Due to their exceptionally high thermal stability and the fact that they contain PdII centers, controversial PdII/PdIV cycles have been often proposed as potential catalytic mechanisms. However, pincer‐type PdIV intermediates have never been experimentally observed, and computational studies to support the proposed PdII/PdIV mechanisms with pincer‐type catalysts have never been carried out. In this computational study the feasibility of potential catalytic cycles involving PdIV intermediates was explored. Density functional calculations were performed on experimentally applied aminophosphine‐, phosphine‐, and phosphite‐based pincer‐type Heck catalysts with styrene and phenyl bromide as substrates and (E)‐stilbene as coupling product. The potential‐energy surfaces were calculated in dimethylformamide (DMF) as solvent and demonstrate that PdII/PdIV mechanisms are thermally accessible and thus a true alternative to formation of palladium nanoparticles. Initial reaction steps of the lowest energy path of the catalytic cycle of the Heck reaction include dissociation of the chloride ligands from the neutral pincer complexes [{2,6‐C6H3(XPR2)2}Pd(Cl)] [X=NH, R=piperidinyl ( 1 a ); X=O, R=piperidinyl ( 1 b ); X=O, R=iPr ( 1 c ); X=CH2, R=iPr ( 1 d )] to yield cationic, three‐coordinate, T‐shaped 14e? palladium intermediates of type [{2,6‐C6H3(XPR2)2}Pd]+ ( 2 ). An alternative reaction path to generate complexes of type 2 (relevant for electron‐poor pincer complexes) includes initial coordination of styrene to 1 to yield styrene adducts [{2,6‐C6H3(XPR2)2}Pd(Cl)(CH2?CHPh)] ( 4 ) and consecutive dissociation of the chloride ligand to yield cationic square‐planar styrene complexes [{2,6‐C6H3(XPR2)2}Pd(CH2?CHPh)]+ ( 6 ) and styrene. Cationic styrene adducts of type 6 were additionally found to be the resting states of the catalytic reaction. However, oxidative addition of phenyl bromide to 2 result in pentacoordinate PdIV complexes of type [{2,6‐C6H3(XPR2)2}Pd(Br)(C6H5)]+ ( 11 ), which subsequently coordinate styrene (in trans position relative to the phenyl unit of the pincer cores) to yield hexacoordinate phenyl styrene complexes [{2,6‐C6H3(XPR2)2}Pd(Br)(C6H5)(CH2?CHPh)]+ ( 12 ). Migration of the phenyl ligand to the olefinic bond gives cationic, pentacoordinate phenylethenyl complexes [{2,6‐C6H3(XPR2)2}Pd(Br)(CHPhCH2Ph)]+ ( 13 ). Subsequent β‐hydride elimination induces direct HBr liberation to yield cationic, square‐planar (E)‐stilbene complexes with general formula [{2,6‐C6H3(XPR2)2}Pd(CHPh?CHPh)]+ ( 14 ). Subsequent liberation of (E)‐stilbene closes the catalytic cycle.  相似文献   

3.
The ligand H6ioan has been used to synthesize the three dinuclear complexes [(ioan)MnIITiIV], [(ioan)FeIITiIV], and [(ioan)FeIIITiIV]+. The face-sharing bridging mode of the three phenolates provides short M-TiIV distances of ≈3.0 Å. Mössbauer spectra of [(ioan)FeIIITiIV]+ show a magnetically split six-line spectrum at 3 K in zero magnetic field demonstrating a slow magnetic relaxation. Magnetic measurements provide a zero-field splitting of |D|=5 cm−1 in [(ioan)FeIITiIV]. EPR spectroscopy demonstrates sizable zero-field splittings of the S=5/2 spin systems of [(ioan)MnIITiIV] (D=0.246 cm−1) and [(ioan)FeIIITiIV]+ (D<−1 cm−1) that can be related to enforced covalency of the M-Oph bonds. [(ioan)FeIIITiIV]+ exhibits a reversible reduction at −0.26 V vs. Fc+/Fc demonstrating the facile accessibility of FeIII and FeII. In contrast to an irreversible oxidation in [(ioan)NiIITiIV] at 0.78 V vs. Fc+/Fc, the reversible oxidation at 0.25 V vs. Fc+/Fc in [(ioan)MnIITiIV] indicates even the access of MnIII. These results indicate that pentanuclear complexes [(ioan)FeM1M2M1Fe(ioan)]n+ are meaningful targets to access electron delocalization in mixed-valence systems over five ions due to the facile accessibility of both FeII and FeIII in the terminal positions. This study provides important local spin-Hamiltonian and Mössbauer parameters that will be essential for the understanding of the potentially complicated electronic structure in the anticipated pentanuclear complexes.  相似文献   

4.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes XXI The Influence of the PR3 Ligands on Formation and Properties of the Phosphinophosphinidene Complexes [{η2tBu2P–P}Pt(PR3)2] and [{η2tBu2P1–P2}Pt(P3R3)(P4R′3)] (R3P)2PtCl2 and C2H4 yield the compounds [{η2‐C2H4}Pt(PR3)2] (PR3 = PMe3, PEt3, PPhEt2, PPh2Et, PPh2Me, PPh2iPr, PPh2tBu and P(p‐Tol)3); which react with tBu2P–P=PMetBu2 to give the phosphinophosphinidene complexes [{η2tBu2P–P}Pt(PMe3)2], [{η2tBu2P–P}Pt(PEt3)2], [{η2tBu2P–P}Pt(PPhEt2)2], [{η2tBu2P–P}Pt(PPh2Et)2], [{η2tBu2P–P}Pt(PPh2Me)2], [{η2tBu2P–P}Pt(PPh2iPr], [{η2tBu2P–P}Pt(PPh2tBu)2] and [{η2tBu2P–P}Pt(P(p‐Tol)3)2]. [{η2tBu2P–P}Pt(PPh3)2] reacts with PMe3 and PEt3 as well as with tBu2PMe, PiPr3 and P(c‐Hex)3 by substituting one PPh3 ligand to give [{η2tBu2P1–P2}Pt(P3Me3)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3Ph3)(P4Me3)], [{η2tBu2P1–P2}Pt(P3Et3)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3MetBu2)(P4Ph3)], [{η2tBu2P1–P2}Pt(P3iPr3)(P4Ph3)] and [{η2tBu2P1–P2}Pt(P3(c‐Hex)3)(P4Ph3)]. With tBu2PMe, [{η2tBu2P–P}Pt(P(p‐Tol)3)2] forms [{η2tBu2P1–P2}Pt(P3MetBu2)(P4(p‐Tol)3)]. The NMR data of the compounds are given and discussed with respect to the influence of the PR3 ligands.  相似文献   

5.
Cooperative strong negatively charged and neutral O–H⋅⋅⋅O as well as weak charge-assisted C–Hδ+⋅⋅⋅Oδ hydrogen-bonding interactions have been utilized for the crystal engineering of organometallic FeII/CoIII and FeII/CrI sandwich complexes. A section of the structure of [(η6-C6H6)2Cr]+{[(η5-C5H4COOH)(η5-C5H4COO)Fe][(η5-C5H4COOH)2Fe]0.5} is shown in the picture.  相似文献   

6.
Abstract

The triply chloro-bridged binuclear complex [Ru2Cl5(CO)(PPh3)3]·CH2Cl2, (PPh3 = triphenylphosphine), Mr = 1279.23, prepared from the precursor compound [RuCl3(PPh3)2DMA]·DMA (DMA = N,N′-dimethylacetamide) and crystallizes in the monoclinic space group P21/c. The structure was solved from 6994 independent reflections for which I > 3σ(I) by Patterson and difference Fourier techniques and refined to a final R = 0.042. The complex is formed by two Ru atoms bridged through three chloride anions. One Ru atom is further coordinated to two non-bridging Cl atoms and a triphenylphosphine ligand, whereas the other is bonded to two PPh3 ligands and a carbon monoxide molecule. The presence of RuIII was confirmed by EPR data. The absence of an intervalence charge-transfer transition (IT) in the near-infrared spectrum suggests that the binuclear complex is of a localized valence type. The IR spectrum shows a νCO band at 1964cm? and νRu-Cl bands at 328, 280 cm?1, corresponding to chlorides at terminal positions and 250, 225 cm?1 for the bridged ones. Two redox processes, RuII/RuII (E1/2 = -0.29 V) ← RuII/RuIII ← (E1/2 = 1.19 V) RuIII/RuIII, were observed by cyclic voltammetry.  相似文献   

7.
A pair of diastereomeric dinuclear complexes, [Tp′(CO)BrW{μ-η2-C,C′2-S,P-C2(PPh2)S}Ru(η5-C5H5)(PPh3)], in which W and Ru are bridged by a phosphinyl(thiolato)alkyne in a side-on carbon P,S-chelate coordination mode, were synthesized, separated and fully characterized. Even though the isomers are similar in their spectroscopic properties and redox potentials, the like-isomer is oxidized at W while the unlike-isomer is oxidized at Ru, which is proven by IR, NIR and EPR-spectroscopy supported by spectro-electrochemistry and computational methods. The second oxidation of the complexes was shown to take place at the metal left unaffected in the first redox step. Finally, the tipping point could be realized in the unlike isomer of the electronically tuned thiophenolate congener [Tp′(CO)(PhS)W{μ-η2-C,C′2-S,P-C2(PPh2)S}Ru(η5-C5H5)-(PPh3)], in which valence trapped WIII/RuII and WII/RuIII cationic species are at equilibrium.  相似文献   

8.
The diorganotin compounds, [Me2Sn{OOP(OBun)2}2] (II), [Me2Sn{OSP(OBun)2}2] (III) and [Me2Sn{SSP(OBun)2}2] (IV), have been investigated by 13C, 31P and 119Sn solution state NMR as well as solid state NMR. On the basis of these studies it is suggested that the phosphate ligand acts in a symmetrical chelating fashion in II, while the ligands behave in an anisobidentate manner in III and IV.  相似文献   

9.
Cobalt complexes are extensively studied as bioinspired models for non-heme oxygenases as they facilitate both the stabilization and characterization of metal-oxygen intermediates. As an analog to the well-known Co(cyclam) complex Co{N4} (cyclam=1,4,8,11-tetraazacyclotetradecane), the CoII complex Co{i-N4} with the isomeric isocyclam ligand (isocyclam=1,4,7,11-tetraazacyclotetradecane) was synthesized and characterized. Despite the identical N4 donor set of both complexes, Co{i-N4} enables the 2e/2H+ reduction of O2 with a lower overpotential (ηeff of 385 mV vs. 540 mV for Co{N4} ), albeit with a diminished turnover frequency. Characterization of the intermediates formed upon O2 activation of Co{i-N4} reveals a structurally identified stable μ-peroxo CoIII dimer as the main product. A superoxo CoIII species is also formed as a minor product, as indicated by EPR spectroscopy. In further reactivity studies, the electrophilicity of these in situ generated Co−O2 species was demonstrated by the oxidation of the O−H bond of TEMPO−H (2,2,6,6-tetramethylpiperidin-1-ol) via a H atom abstraction process. Unlike the known Co(cyclam), Co{i-N4} can be employed in oxygen atom transfer reactions oxidizing triphenylphosphine to the corresponding phosphine oxide highlighting the impact of geometrical modifications of the ligand while preserving the ring size and donor atom set on the reactivity of biomimetic oxygen activating complexes.  相似文献   

10.
A one pot reaction of Li2{1, 4‐(Me3Si)2C8H6}, LnCl3, and K{CH(PPh2NSiMe3)2} leads to the 1, 4‐bis(trimethylsilyl)cyclooctatetraene bis(phosphinimino)methanide complexes of yttrium and erbium, [{CH(PPh2NSiMe3)2}Ln(η8‐{1, 4‐(Me3Si)2C8H6})] (Ln = Y, Er). Both complexes have been characterized by single crystal X‐ray diffraction. The solid state structures show that the two bulky ligands cause a steric crowding around the lanthanide atom. As a result of this steric crowding both ligands are asymmetrically attached to the lanthanide atom.  相似文献   

11.
This paper describes the synthesis of a new acetylene-bridged triphosphine, ((phenylphosphanediyl)bis-(ethyne-2,1-diyl))bis(diphenylphosphane) [PhP{C≡CPPh2}2] ( 2 ) and its coordination complexes of RuII, RhIII, CuI, PdII and PtII. The reaction of diethynylphenylphosphine [PhP{C≡CH}2] ( 1 ) with two equivalents of LiHMDS followed by the addition of PPh2Cl resulted in 2 . Treatment of 2 with [Ru(η6-p-cymene)Cl2]2 and [RhCp*Cl2]2 in 1 : 1.5 molar ratios produced trinuclear complexes [{Ru(η6-p-cymene)Cl2}3{μ3-PPh(C≡CPPh2)2}] ( 3 ) and [(RhCp*Cl2)3{μ3-PPh(C≡CPPh2)2}] ( 4 ). The molecular structure of 3 was confirmed by single crystal X-ray analysis. Treatment of 2 with M(COD)Cl2 (M=Pd, Pt) in 2 : 3 ratio afforded open book type complexes [(MCl2)3{μ3-PPh(C≡CPPh2)}2] ( 5 M=Pd, 6 M=Pt). The reaction of 2 with CuI in 1 : 2 ratio afforded 1-D coordination polymer [{Cu2(μ2-I)2(CH3CN)}{PPh(C≡CPPh2)2}3{CuI}2] ( 7 ) containing [(CuI)2{μ2-(P−C≡C−P)3}] cylindrical units.  相似文献   

12.
The electronic structures of the five members of the electron transfer series [Mo(bpy)3]n (n=3+, 2+, 1+, 0, 1?) are determined through a combination of techniques: electro‐ and magnetochemistry, UV/Vis and EPR spectroscopies, and X‐ray crystallography. The mono‐ and dication are prepared and isolated as PF6 salts for the first time. It is shown that all species contain a central MoIII ion (4d3). The successive one‐electron reductions/oxidations within the series are all ligand‐based, involving neutral (bpy0), the π‐radical anion (bpy.)1?, and the diamagnetic dianion (bpy2?)2?: [MoIII(bpy0)3]3+ (S=3/2), [MoIII(bpy.)(bpy0)2]2+ (S=1), [MoIII(bpy.)2(bpy0)]1+ (S=1/2), [MoIII(bpy.)3] (S=0), and [MoIII(bpy.)2(bpy2?)]1? (S=1/2). The previously described diamagnetic dication “[MoII(bpy0)3](BF4)2” is proposed to be a diamagnetic dinuclear species [{Mo(bpy)3}22‐O)](BF4)4. Two new polynuclear complexes are prepared and structurally characterized: [{MoIIICl(Mebpy0)2}22‐O)]Cl2 and [{MoIV(tpy.)2}22‐MoVIO4)](PF6)2?4 MeCN.  相似文献   

13.
A mixed-valence {MnII3MnIIIFeII2FeIII2} cyanide-bridged molecular cube hosting a caesium cation, Cs⊂{Mn4Fe4}, was synthesized and structurally characterized by X-ray diffraction. Cyclic-voltammetry measurements show that its electronic state can be switched between five different redox states, which results in a remarkable electrochromic effect. Magnetic measurements on fresh samples point to the occurrence of a spin-state change near room temperature, which could be ascribed to a metal-to-metal electron transfer converting the {FeII−CN−MnIII} pair into a {FeIII−CN−MnII} pair. This feature was only previously observed in the polymeric MnFe Prussian-blue analogues (PBAs). Moreover, this novel switchable molecule proved to be soluble and stable in organic solvents, paving the way for its integration into advanced materials.  相似文献   

14.
The selective formation of the dinuclear butterfly complexes [{Cp′′′Fe(CO)2}2(μ,η1:1‐E4)] (E=P ( 1 a ), As ( 1 b )) and [{Cp*Cr(CO)3}2(μ,η1:1‐E4)] (E=P ( 2 a ), As ( 2 b )) as new representatives of this rare class of compounds was found by reaction of E4 with the corresponding dimeric carbonyl complexes. Complexes 1 b and 2 b are the first As4 butterfly compounds with a bridging coordination mode. Moreover, first studies regarding the reactivity of 1 b and 2 b are presented, revealing the formation of the unprecedented As8 cuneane complexes [{Cp′′′Fe(CO)2}2{Cp′′′Fe(CO)}241:1:2:2‐As8)] ( 3 b ) and [{Cp*Cr(CO)3}441:1:1:1‐As8)] ( 4 ). The compounds are fully characterized by NMR and IR spectroscopy as well as by X‐ray structure analysis. In addition, DFT calculations give insight into the transformation pathway from the E4 butterfly to the corresponding cuneane structural motif.  相似文献   

15.
Trinuclear systems of formula [{Cr(LN3O2Ph)(CN)2}2M(H2LN3O2R)] (M=MnII and FeII, LN3O2R stands for pentadentate ligands) were prepared in order to assess the influence of the bending of the apical M−N≡C linkages on the magnetic anisotropy of the FeII derivatives and in turn on their Single-Molecule Magnet (SMM) behaviors. The cyanido-bridged [Cr2M] derivatives were obtained by assembling trans-dicyanido CrIII complex [Cr(LN3O2Ph)(CN)2] and divalent pentagonal bipyramid complexes [MII(H2LN3O2R)]2+ with various R substituents (R=NH2, cyclohexyl, S,S-mandelic) imparting different steric demand to the central moiety of the complexes. A comparative examination of the structural and magnetic properties showed an obvious effect of the deviation from straightness of the M−N≡C alignment on the slow relaxation of the magnetization exhibited by the [Cr2Fe] complexes. Theoretical calculations have highlighted important effects of the bending of the apical C−N−Fe linkages on both the magnetic anisotropy of the FeII center and the exchange interactions with the CrIII units.  相似文献   

16.
Addition of MesN3 (Mes=2,4,6-Me3C6H2) to germylene [(NONtBu)Ge] (NONtBu=O(SiMe2NtBu)2) ( 1 ) gives germanimine, [(NONtBu)Ge=NMes] ( 2 ). Compound 2 behaves as a metalloid, showing reactivity reminiscent of both transition metal-imido complexes, undergoing [2+2] addition with heterocumulenes and protic sources, as well as an activated diene, undergoing a [4+2] cycloaddition, or “metallo”-Diels–Alder, reaction. In the latter case, the diene includes the Ge=N bond and π-system of the Mes substituent, which is reactive towards dienophiles including benzaldehyde, benzophenone, styrene, and phenylacetylene.  相似文献   

17.
Cs3AsGeSe5 and Cs4Ge2Se6 can be prepared by methanolothermal reaction of elemental As, Ge and Se with Cs2CO3 at 190 °C. The former quaternary phase contains zweier [{AsGeSe5}3?] chains consisting of corner‐bridged GeSe4 tetrahedra and AsSe3 pyramids and represents the first GeIV‐AsIII chalcogenidometalate. Cs4Ge2Se6 exhibits discrete [Ge2Se6]4? anions formed by two edge‐sharing GeSe4 tetrahedra.  相似文献   

18.
The vibrational spectra of tetravalent metal halides (M = Si, Ge, Sn) and the corresponding dihalocarbene analogs MIIHal2, obtained by the authors, and the relevant published data are compared. The spectra of the MIIHal2 species exhibit inversion of the M-Hal stretching frequencies (νs(MIIHal) > ν as(MIIHal)). This can be used for analytical purposes and allows one to distinguish between the spectra of the MIV and MII halides. The IR and Raman spectra of the complexes of dihalogermylenes and -stannylenes with triphenylphosphine and 1,4-dioxane also exhibit inversion of the ν(MHal) stretching frequencies. This confirms the conclusion drawn earlier based on the analysis of the geometric parameters and reactivities of the complexes in question that the divalent state of the M atom in these species is retained. Dedicated to Academician N. K. Kochetkov on the occasion of his 90th birthday. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1089–1092, May, 2005.  相似文献   

19.
Reactions of the beryllium dihalide complexes [BeX2(OEt2)2] (X=Br or I) with N,N,N′,N′‐tetramethylethylenediamine (TMEDA), a series of diazabutadienes, or bis(diphenylphosphino)methylene (DPPM) have yielded the chelated complexes, [BeX2(TMEDA)], [BeX2{(RN=CH)2}] (R=tBu, mesityl (Mes), 2,6‐diethylphenyl (Dep) or 2,6‐diisopropylphenyl (Dip)), and the non‐chelated system, [BeI21P‐DPPM)2]. Reactions of lithium or potassium salts of a variety of β‐diketiminates have given both three‐coordinate complexes, [{HC(RCNAr)2}BeX] (R=H or Me; Ar=Mes, Dep or Dip; X=Br or I); and four‐coordinate systems, [{HC(MeCNPh)2}BeBr(OEt2)] and [{HC(MeCNDip)(MeCNC2H4NMe2}BeI]. Alkali metal salts of ketiminate, guanidinate, boryl/phosphinosilyl amide, or terphenyl ligands, lead to dimeric [{BeI{μ‐[(OCMe)(DipNCMe)]CH}}2], and monomeric [{iPr2NC(NMes)2}BeI(OEt2)], [κ2N,P‐{(HCNDip)2B}(PPh2SiMe2)NBeI(OEt2)] and [{C6H3Ph2‐2,6}BeBr(OEt2)], respectively. Compound [{HC(MeCNPh)2}BeBr(OEt2)] undergoes a Schlenk redistribution reaction in solution, affording the homoleptic complex, [{HC(MeCNPh)2}2Be]. The majority of the prepared complexes have been characterized by X‐ray crystallography and multi‐nuclear NMR spectroscopy. The structures and stability of the complexes are discussed, as is their potential for use as precursors in poorly developed low oxidation state beryllium chemistry.  相似文献   

20.
The water-soluble complex [RuClCp(PPh3)(mPTA)](CF3SO3) reacts with the thiopurines, bis(S-8-thiotheophylline)methane (MBTTH2), 1,2-bis(S-8-thiotheophylline)ethane (EBTTH2), and 1,3-bis(S-8-thiotheophylline)propane (PBTTH2), to lead to the binuclear ruthenium(II) complexes [{RuCp(PPh3)(mPTA)}2-μ-(LS7,S′7)](CF3SO3)2 where (L = MBTT2? (1), EBTT2? (2), and PBTT2? (3)). All the complexes have been fully characterized by elemental analysis, IR, and multinuclear 1H, 13C{1H}, and 31P{1H} NMR spectroscopy. The cyclic voltammetry of the complexes is characterized by two one-electron oxidative responses (RuII–RuII/RuIII–RuII; RuIII–RuII/RuIII–RuIII) that increase their redox potential when the bis(8-thiotheophylline)-alkyl-bridge growths. The reactivity against DNA and partition coefficient of the complexes were also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号