首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lithium-sulfur (Li-S) batteries are one of the most promising high-energy-density storage systems. However, serious capacity attenuation and poor cycling stability induced by the shuttle effect of polysulfide intermediates can impede the practical application of Li-S batteries. Herein we report a novel sulfur cathode by intertwining multi-walled carbon nanotubes (CNTs) and porous boron nitride fibers (BNFs) for the subsequent loading of sulfur. This structural design enables trapping of active sulfur and serves to localize the soluble polysulfide within the cathode region, leading to low active material loss. Compared with CNTs/S, CNTs/BNFs/S cathodes deliver a high initial capacity of 1222 mAh g−1 at 0.1 C. Upon increasing the current density to 4 C, the cell retained a capacity of 482 mAh g−1 after 500 cycles with a capacity decay of only 0.044 % per cycle. The design of CNTs/BNFs/S gives new insight on how to optimize cathodes for Li-S batteries.  相似文献   

2.
Lithium-Sulfur batteries (LSBs) have been considered as a promising candidate for the next generation of energy storage systems due to their high theoretical capacity. However, there are still lots of pending scientific and technological issues to be solved. Framework materials show great potential to address the above-mentioned issues due to the highly ordered distribution of pore sizes, effective catalytic activity, and periodically arranged aperture. In addition, good tunability gives framework materials unlimited possibilities to achieve satisfying performance for LSBs. In this review, the recent advances in pristine framework materials, their derivatives, and composites have been summarized. And a short conclusion and outlook regard to future prospects for guiding the development of framework materials and LSBs.  相似文献   

3.
本工作基于工业炼油产品沥青,开发了一种无金属、氮和硫共掺杂多孔碳纳米片(NSPC)的合成方法。获得的多孔碳纳米片具有高比表面积(339 m2·g-1)和优异的固硫能力。同时,高含量氮、硫共掺杂可以有效增强碳材料的导电性,同时促进多硫化物的高效催化转化。通过熔融法固硫后,制备得到的NSPC/S电极具有较高的比容量和优异的循环稳定性(在0.6C电流密度下,200次循环后容量为762 mAh·g-1),实现了高含量氮和硫共掺杂的二维多孔碳材料的快速批量生产并用于高性能锂硫电池正极材料。  相似文献   

4.
We developed a new nanowire for enhancing the performance of lithium-sulfur batteries. In this study, we synthesized WO3 nanowires (WNWs) via a simple hydrothermal method. WNWs and one-dimensional materials are easily mixed with carbon nanotubes (CNTs) to form interlayers. The WNW interacts with lithium polysulfides through a thiosulfate mediator, retaining the lithium polysulfide near the cathode to increase the reaction kinetics. The lithium-sulfur cell achieves a very high initial discharge capacity of 1558 and 656 mAh g−1 at 0.1 and 3 C, respectively. Moreover, a cell with a high sulfur mass loading of 4.2 mg cm−2 still delivers a high capacity of 1136 mAh g−1 at a current density of 0.2 C and it showed a capacity of 939 mAh g−1 even after 100 cycles. The WNW/CNT interlayer maintains structural stability even after electrochemical testing. This excellent performance and structural stability are due to the chemical adsorption and catalytic effects of the thiosulfate mediator on WNW.  相似文献   

5.
Highly uniform Mo–glycerate solid spheres are synthesized for the first time through a solvothermal process. The size of these Mo–glycerate spheres can be easily controlled in the range of 400–1000 nm by varying the water content in the mixed solvent. As a precursor, these Mo–glycerate solid spheres can be converted into hierarchical MoS2 hollow nanospheres through a subsequent sulfidation reaction. Owing to the unique ultrathin subunits and hollow interior, the as‐prepared MoS2 hollow nanospheres exhibit appealing performance as the anode material for lithium‐ion batteries. Impressively, these hierarchical structures deliver a high capacity of about 1100 mAh g?1 at 0.5 A g?1 with good rate retention and long cycle life.  相似文献   

6.
以多壁碳纳米管/氮化钒复合材料(MWCNT-VN)作为锂硫电池正极载体材料,利用VN的空心结构储存硫和限制多硫化物的穿梭效应.另外,MWCNT形成了一个导电网络,进一步提升了正极的导电性能.在1C的电流密度下,VN/S电极与MWCNT-VN/S电极的初始放电比容量分别为702.2和809.3 mAh·g-1,经过350...  相似文献   

7.
The practical implementation of lithium–sulfur batteries is obstructed by poor conductivity, sluggish redox kinetics, the shuttle effect, large volume variation, and low areal loading of sulfur electrodes. Now, amorphous N-doped carbon/MoS3 (NC/MoS3) nanoboxes with hollow porous architectures have been meticulously designed as an advanced sulfur host. Benefiting from the enhanced conductivity by the N-doped carbon, reduced shuttle effect by the strong chemical interaction between unsaturated Mo and lithium polysulfides, improved redox reaction kinetics by the catalytic effect of MoS3, great tolerance of volume variation and high sulfur loading arising from flexible amorphous materials with hollow-porous structures, the amorphous NC/MoS3 nanoboxes enabled sulfur electrodes to deliver a high areal capacity with superior rate capacity and decent cycling stability. The synthetic strategy can be generalized to fabricate other amorphous metal sulfide nanoboxes.  相似文献   

8.
The shuttling of polysulfides is the most detrimental contribution to degrading the capacity and cycle stability of lithium-sulfur (Li−S) batteries. Adding a carbon interlayer to prevent the polysulfides from migrating is feasible, and a rational design of the structures and surface properties of the carbon layer is essential to increasing its effectiveness. Herein, we report a hierarchical porous carbon (HPC) created by carbonization of bis(phenoxy)phosphazene and in-situ doping of triple heteroatoms into the carbon lattice to fabricate an effective polysulfide-trapping interlayer. The generated carbon integrates the advantages of a hierarchical porous structure, a high specific area and rich dopants (N, O and P), to yield chemisorption and physical confinement for polysulfides and fast ion-transport synergistically. The HPC interlayer significantly improves the electrochemical performance of Li−S batteries, including an exceptional discharge capacity of 1509 mA h/g at 0.06 C and a high capacity retention of 83.7 % after 250 cycles at 0.3 C. This work thus proposes a facile in-situ synthesis of heteroatom-doped carbon with rational porous structures for suppressing the shuttle effect.  相似文献   

9.
10.
制备了α-MnO2纳米管作为硫的宿主材料,将硫填充到α-MnO2管的中空部分,并通过原位聚合法在α-MnO2外层包覆一层薄层聚(3,4-乙烯二氧噻吩)(PEDOT)进一步束缚硫。这样一种双重固硫的阴极材料S@α-MnO2-PEDOT在锂硫电池中体现出了高的性能。在电流密度1 675 mA·g-1(1C)下循环200圈,容量为774.4 mAh·g-1,且在电流密度为3 350 mA·g-1(2C)下容量达854.1 mAh·g-1,体现出良好的循环稳定性和倍率性能。这些显著的性能得益于阴极材料新颖的结构。在这种结构中,α-MnO2纳米管不仅能对硫起到物理限制作用,而且增强了硫宿主材料和多硫化物间的化学相互作用。同时,PEDOT的引入增强了含硫纳米复合材料的导电性,并进一步减少了由于体积变化和多硫化锂的过度溶解引起的硫的损失。  相似文献   

11.
Well‐confined elemental sulfur was implanted into a stacked block of carbon nanospheres and graphene sheets through a simple solution process to create a new type of composite cathode material for lithium–sulfur batteries. Transmission electron microscopy and elemental mapping analysis confirm that the as‐prepared composite material consists of graphene‐wrapped carbon nanospheres with sulfur uniformly distributed in between, where the carbon nanospheres act as the sulfur carriers. With this structural design, the graphene contributes to direct coverage of sulfur to inhibit the mobility of polysulfides, whereas the carbon nanospheres undertake the role of carrying the sulfur into the carbon network. This composite achieves a high loading of sulfur (64.2 wt %) and gives a stable electrochemical performance with a maximum discharge capacity of 1394 mAh g?1 at a current rate of 0.1 C as well as excellent rate capability at 1 C and 2 C. The improved electrochemical properties of this composite material are attributed to the dual functions of the carbon components, which effectively restrain the sulfur inside the carbon nano‐network for use in lithium–sulfur rechargeable batteries.  相似文献   

12.
Qi Gang  Liu Wei  Bei Zhining 《中国化学》2011,29(1):131-134
An efficient route for the synthesis of 5‐substituted 1H‐tetrazole via [2+3] cycloaddition of nitriles and sodium azide is reported using Fe3O4/ZnS hollow nanospheres as a magnetic separable heterogeneous catalyst. The catalyst is very efficient, affording excellent yields and can be reused for several circles. In addition, the Fe3O4 inner shell exhibits magnetism, making the catalyst easily separated by a magnet.  相似文献   

13.
以V2O5空心球作为锂硫电池的正极材料,将其用于存储硫和限制多硫化物的穿梭效应。V2O5空心球的平均直径约为500 nm,为存储硫提供了更多空间并适应硫电极的体积变化。同时,V2O5对多硫化物具有很强的化学吸附性,可以有效地限制多硫化物的穿梭效应。由于中空结构增加了硫的存储,并通过化学键牢固地吸附多硫化物,使该锂硫电池同时具有高容量和良好的稳定性。V2O5/S作为正极的锂硫电池在0.1C倍率时显示出1439 mAh·g-1的高可逆容量,并在1C的倍率下循环300次后的容量约为600 mAh·g-1。  相似文献   

14.
Unique triple‐shelled Mo‐polydopamine (Mo‐PDA) hollow spheres are synthesized through a facile solvothermal process. A sequential self‐templating mechanism for the multi‐shell formation is proposed, and the number of shells can be adjusted by tuning the size of the Mo‐glycerate templates. These triple‐shelled Mo‐PDA hollow spheres can be converted to triple‐shelled MoO2/carbon composite hollow spheres by thermal treatment. Owing to the unique multi‐shells and hollow interior, the as‐prepared MoO2/carbon composite hollow spheres exhibit appealing performance as an anode material for lithium‐ion batteries, delivering a high capacity of ca. 580 mAh g?1 at 0.5 A g?1 with good rate capability and long cycle life.  相似文献   

15.
Nonprecious-metal-based electrocatalysts with low cost, high activity, and stability are considered as one of the most promising alternatives to Pt-based catalysts for the oxygen reduction reaction (ORR). Herein, an economical and easy-to-fabricate catalyst is developed, that is, Fe/Fe3C embedded in N-doped hollow carbon spheres (Fe/Fe3C/NHCS), which gave the half-wave potential of 0.84 V in 0.1 m KOH, similar to the commercial Pt/C catalyst. Surprisingly, the favorable ORR performance of the as-prepared catalyst was obtained in both acidic and neutral conditions with almost a four-electron pathway and low H2O2 yield, which desirable the development of the proton exchange membrane (PEM) and microbial electrolysis cell (MEC) technology. Additionally, the obtained catalyst demonstrated better long-term stability and high methanol tolerance over a wide range of pH. These features could be mainly attributed to the synergistic effect between Fe/Fe3C and Fe-Nx sites, the hollow structure with mesopores, and the well-dispersed Fe/Fe3C nanoparticles owing to the existence of the abundant hydrophilic groups within the HCS precursor. As such, designing an efficient and cheap ORR catalyst that can operate at alkaline, acidic, and neutral solutions is highly desirable, yet challenging.  相似文献   

16.
A hollow carbon nanofiber hybrid nanostructure anchored with titanium dioxide (HCNF@TiO2) was prepared as a matrix for effective trapping of sulfur and polysulfides as a cathode material for Li–S batteries. The synthesized composites were characterized and examined by X‐ray diffraction, nitrogen adsorption–desorption measurements, field‐emission scanning electron microscopy, scanning transmission electron microscopy, and electrochemical methods such as galvanostatic charge/discharge, rate performance, and electrochemical impedance spectroscopy tests. The obtained HCNF@TiO2–S composite showed a clear core–shell structure with TiO2 nanoparticles coating the surface of the HCNF and sulfur homogeneously distributed in the coating layer. The HCNF@TiO2–S composite exhibited much better electrochemical performance than the HCNF–S composite, which delivered an initial discharge capacity of 1040 mA h g?1 and maintained 650 mAh g?1 after 200 cycles at a 0.5 C rate. The improvements of electrochemical performances might be attributed to the unique hybrid nanostructure of HCNF@TiO2 and good dispersion of sulfur in the HCNF@TiO2–S composite.  相似文献   

17.
The electrode materials with hollow structure and/or graphene coating are expected to exhibit outstanding electrochemical performances in energy‐storage systems. 2D graphene‐wrapped hollow C/Fe3O4 microspheres are rationally designed and fabricated by a novel facile and scalable strategy. The core@double‐shell structure SPS@FeOOH@GO (SPS: sulfonated polystyrene, GO: graphene oxide) microspheres are first prepared through a simple one‐pot approach and then transformed into C/Fe3O4@G (G: graphene) after calcination at 500 °C in Ar. During calcination, the Kirkendall effect resulting from the diffusion/reaction of SPS‐derived carbon and FeOOH leads to the formation of hollow structure carbon with Fe3O4 nanoparticles embedded in it. In the rationally constructed architecture of C/Fe3O4@G, the strongly coupled C/Fe3O4 hollow microspheres are further anchored onto 2D graphene networks, achieving a strong synergetic effect between carbon, Fe3O4, and graphene. As an anode material of Li‐ion batteries (LIBs), C/Fe3O4@G manifests a high reversible capacity, excellent rate behavior, and outstanding long‐term cycling performance (1208 mAh g?1 after 200 cycles at 100 mA g?1).  相似文献   

18.
In this study, a method is developed to fabricate Fe3O4@C particles with a coaxial and penetrated hollow mesochannel based on the concept of “confined nanospace pyrolysis”. The synthesis involves the production of a polydopamine coating followed by a silica coating on a rod‐shaped β‐FeOOH nanoparticle, and subsequent treatment by using confined nanospace pyrolysis and silica removal procedures. Typical coaxial hollow Fe3O4@C possesses a rice‐grain morphology and mesoporous structure with a large specific surface area, as well as a continuous and flexible carbon shell. Electrochemical tests reveal that the hollow Fe3O4@C with an open‐ended nanostructure delivers a high specific capacity (ca. 864 mA h g?1 at 1 A g?1), excellent rate capability with a capacity of about 582 mA h g?1 at 2 A g?1, and a high Coulombic efficiency (>97 %). The excellent electrochemical performance benefits from the hollow cavity with an inner diameter of 18 nm and a flexible carbon shell that can accommodate the volume change of the Fe3O4 during the lithium insertion/extraction processes as well as the large specific surface area and open inner cavity to facilitate the rapid diffusion of lithium ions from electrolyte to active material. This fabrication strategy can be used to generate a hollow or porous metal oxide structure for high‐performance Li‐ion batteries.  相似文献   

19.
《Analytical letters》2012,45(12):1978-1990
A novel absorbent was prepared by sodium dodecyl sulfonate (SDS)-modified activated carbon (SDS-AC) and was employed as the microcolumn packing material for separation/preconcentration of trace Cd(II). The method based on Cd(II) was quantitatively retained by SDS-AC sorbent, which entailed cation exchange nature and negative charged surface, facilitating favorable retention of positively charged ions. The retained Cd(II) was effectively recovered with elution by 1 mol · L?1 HNO3, and the eluent was quantified by electrothermal atomic absorption spectrometry (ET-AAS). Under the optimized conditions, the limit of detection (LOD) for Cd(II) was 3 ng · L?1 with the consumption of 20.0 mL sample solution. The relative standard deviation (RSD) for ten replicate measurements of 50 ng · L?1 Cd(II) was 2.9%. The developed technique was demonstrated for the determination of trace Cd(II) in water samples and the recoveries for spiked samples were found to be in the range of 94.9–107.2%. For validation, two certified reference materials of water samples (GBW08607 and GBW08608) were analyzed, and the results obtained were in good agreement with the certified values.  相似文献   

20.
The present article reports the application of Thiosemicarbazide‐modified multiwalled carbon nanotubes (MWCNTs‐TSC) as a new, easily prepared selective and stable solid sorbent for the preconcentration of trace Co(II), Cd(II), Cu(II) and Zn(II) ions in aqueous solution prior to the determination by flame atomic absorption spectrometry. The studied metal ions can be adsorbed quantitatively on MMWNTs at pH 5.0 and then eluted completely with HNO3 (1.5 mol L?1) prior to their determination by flame atomic absorption spectrometry. The separation/preconcentration conditions of analytes were investigated, including the pH, the sample flow rate and volume, the elution condition and the interfering ions. The maximum adsorption capacity of the adsorbent at optimum conditions were found to be 32.5, 27.3, 44.5 and 34.1 mg g?1 for Co(II), Cd(II), Cu(II) and Zn(II), and the detection limits of the method were found to be 0.28, 0.13, 0.21 and 0.17 μg L?1, respectively. The proposed method was successfully applied for extraction and determination of the analytes in well water, sea water, wastewater, soil, and blood samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号