共查询到20条相似文献,搜索用时 0 毫秒
1.
Thomas Holmstrøm Mette Galsgaard Malle Shunliang Wu Knud Jørgen Jensen Nikos S. Hatzakis Christian Marcus Pedersen 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(23):6917-6922
Liposomes are versatile three-dimensional, biomaterial-based frameworks that can spatially enclose a variety of organic and inorganic biomaterials for advanced targeted-delivery applications. Implementation of external-stimuli-controlled release of their cargo will significantly augment their wide application for liposomal drug delivery. This paper presents the synthesis of a carbohydrate-derived lipid, capable of changing its conformation depending on the presence of Zn2+: an active state in the presence of Zn2+ ions and back to an inactive state in the absence of Zn2+ or when exposed to Na2EDTA, a metal chelator with high affinity for Zn2+ ions. This is the first report of a lipid triggered by the presence of a metal chelator. Total internal reflection fluorescence microscopy and a single-liposome study showed that it indeed was possible for the lipid to be incorporated into the bilayer of stable liposomes that remained leakage-free for the fluorescent cargo of the liposomes. On addition of EDTA to the liposomes, their fluorescent cargo could be released as a result of the membrane-incorporated lipids undergoing a conformational change. 相似文献
2.
Dr. Xiaolong Liang Xiaoda Li Lijia Jing Peng Xue Lingdong Jiang Prof. Qiushi Ren Prof. Dr. Zhifei Dai 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(47):16113-16121
This paper reports the facile design and synthesis of a series of lipidic organoalkoxysilanes with different numbers of triethoxysilane headgroups and hydrophobic alkyl chains linked by glycerol and pentaerythritol for the construction of cerasomes with regulated surface siloxane density and controlled release behavior. It was found that the number of triethoxysilane headgroups affected the properties of the cerasomes for encapsulation efficiency, drug loading capacity, and release behavior. For both water‐soluble doxorubicin (DOX) and water‐insoluble paclitaxel (PTX), the release rate from the cerasomes decreased as the number of triethoxysilane headgroups increased. The slower release rate from the cerasomes was attributed to the higher density of the siloxane network on the surface of the cerasomes, which blocks the drug release channels. In contrast to the release results with DOX, the introduction of one more hydrophobic alkyl chain into the cerasome‐forming lipid resulted in a slower release rate of PTX from the cerasomes due to the formation of a more compact cerasome bilayer. An MTT viability assay showed that all of these drug‐loaded cerasomes inhibited proliferation of the HepG2 cancer cell line. The fine tuning of the chemical structure of the cerasome‐forming lipids would foster a new strategy to precisely regulate the release rate of drugs from cerasomes. 相似文献
3.
Jinchao Lou Xiaoyu Zhang Prof. Michael D. Best 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(1):20-25
Advancements in the field of liposomal drug carriers have culminated in greatly improved delivery properties. An important aspect of this work entails development of designer liposomes for release of contents triggered by environmental changes. The majority of these systems are driven by chemical reactions in the presence of different stimuli. However, a promising new paradigm instead focuses on molecular recognition events as the impetus for content release. In certain cases, these platforms exploit synthetic lipid switches designed to undergo conformational changes upon binding to target ions or molecules that perturb membrane assembly, thereby triggering cargo release. Examples of this approach reported thus far showcase how rational design of lipid switches can result in dramatic changes in lipid assembly properties. These strategies show great promise for opening up new pathophysiological stimuli that can be harnessed for programmed content release in drug delivery applications. 相似文献
4.
Jinchao Lou Prof. Michael D. Best 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(39):8597-8607
Liposomes are effective nanocarriers due to their ability to deliver encapsulated drugs to diseased cells. Nevertheless, liposome delivery would be improved by enhancing the ability to control the release of contents at the target site. While various stimuli have been explored for triggering liposome release, enzymes provide excellent targets due to their common overexpression in diseased cells. We present a general approach to enzyme-responsive liposomes exploiting targets that are commonly aberrant in disease, including esterases, phosphatases, and β-galactosidases. Responsive lipids correlating with each enzyme family were designed and synthesized bearing an enzyme substrate moiety attached via a self-immolating linker to a non-bilayer lipid scaffold, such that enzymatic hydrolysis triggers lipid decomposition to disrupt membrane integrity and release contents. Liposome dye leakage assays demonstrated that each enzyme-responsive liposome yielded significant content release upon enzymatic treatment compared to minimal release in controls. Results also showed that fine-tuning liposome composition was critical for controlling release. DLS analysis showed particle size increases in the cases of esterase- and β-galactosidase-responsive lipids, supporting alterations to membrane properties. These results showcase an effective modular strategy that can be tailored to target different enzymes, providing a promising new avenue for advancing liposomal drug delivery. 相似文献
5.
Jinchao Lou Megan L. Qualls Macy M. Hudson Dillon P. McBee Prof. Joshua A. Baccile Prof. Michael D. Best 《Chemistry (Weinheim an der Bergstrasse, Germany)》2022,28(46):e202201057
We report boronate-caged guanidine-lipid 1 that activates liposomes for cellular delivery only upon uncaging of this compound by reactive oxygen species (ROS) to produce cationic lipid products. These liposomes are designed to mimic the exceptional cell delivery properties of cell-penetrating peptides (CPPs), while the inclusion of the boronate cage is designed to enhance selectivity such that cell entry will only be activated in the presence of ROS. Boronate uncaging by hydrogen peroxide was verified by mass spectrometry and zeta potential (ZP) measurements. A microplate-based fluorescence assay was developed to study the ROS-mediated vesicle interactions between 1 -liposomes and anionic membranes, which were further elucidated via dynamic light scattering (DLS) analysis. Cellular delivery studies utilizing fluorescence microscopy demonstrated significant enhancements in cellular delivery only when 1 -liposomes were incubated with hydrogen peroxide. Our results showcase that lipid 1 exhibits strong potential as an ROS-responsive liposomal platform for targeted drug delivery applications. 相似文献
6.
M Jayaraman SM Ansell BL Mui YK Tam J Chen X Du D Butler L Eltepu S Matsuda JK Narayanannair KG Rajeev IM Hafez A Akinc MA Maier MA Tracy PR Cullis TD Madden M Manoharan MJ Hope 《Angewandte Chemie (International ed. in English)》2012,51(34):8529-8533
Special (lipid) delivery: The role of the ionizable lipid pK(a) in the in?vivo delivery of siRNA by lipid nanoparticles has been studied with a large number of head group modifications to the lipids. A tight correlation between the lipid pK(a) value and silencing of the mouse FVII gene (FVII ED(50) ) was found, with an optimal pK(a) range of 6.2-6.5. The most potent cationic lipid from this study has ED(50) levels around 0.005?mg?kg(-1) in mice and less than 0.03?mg?kg(-1) in non-human primates. 相似文献
7.
Mathieu Berchel Stéphanie Le Corre Tony Le Gall Hélène Couthon-Gourvès Jean-Pierre Haelters Patrick Midoux 《Phosphorus, sulfur, and silicon and the related elements》2013,188(1-3):91-94
Abstract Lipophosphoramide-based cationic lipids are a class of synthetic vectors used for gene delivery that can be produced in multigram scale. The use of trimethylarsonium moiety as a cationic polar head was beneficial to produce efficient gene delivery vectors for in vivo applications. Moreover, this type of cationic lipid can also exhibit some bactericidal effects. 相似文献
8.
Montassar Khalil Alexis Hocquigny Mathieu Berchel Tristan Montier Paul-Alain Jaffrs 《Molecules (Basel, Switzerland)》2021,26(24)
A convergent synthesis of cationic amphiphilic compounds is reported here with the use of the phosphonodithioester–amine coupling (PAC) reaction. This versatile reaction occurs at room temperature without any catalyst, allowing binding of the lipid moiety to a polar head group. This strategy is illustrated with the use of two lipid units featuring either two oleyl chains or two-branched saturated lipid chains. The final cationic amphiphiles were evaluated as carriers for plasmid DNA delivery in four cell lines (A549, Calu3, CFBE and 16HBE) and were compared to standards (BSV36 and KLN47). These new amphiphilic derivatives, which were formulated with DOPE or DOPE-cholesterol as helper lipids, feature high transfection efficacies when associated with DOPE. The highest transfection efficacies were observed in the four cell lines at low charge ratios (CR = 0.7, 1 or 2). At these CRs, no toxic effects were detected. Altogether, this new synthesis scheme using the PAC reaction opens up new possibilities for investigating the effects of lipid or polar head groups on transfection efficacies. 相似文献
9.
Dr. Ouided Friaa Melissa Furukawa Aisha Shamas‐Din Dr. Brian Leber Dr. David W. Andrews Dr. Cécile Fradin 《Chemphyschem》2013,14(11):2476-2490
Quantification of the fluorescence properties of diffusing particles in solution is an invaluable source of information for characterizing the interactions, stoichiometry, or conformation of molecules directly in their native environment. In the case of heterogeneous populations, single‐particle detection should be the method of choice and it can, in principle, be achieved by using confocal imaging. However, the detection of single mobile particles in confocal images presents specific challenges. In particular, it requires an adapted set of imaging parameters for capturing the confocal images and an adapted event‐detection scheme for analyzing the image. Herein, we report a theoretical framework that allows a prediction of the properties of a homogenous particle population. This model assumes that the particles have linear trajectories with reference to the confocal volume, which holds true for particles with moderate mobility. We compare the predictions of our model to the results as obtained by analyzing the confocal images of solutions of fluorescently labeled liposomes. Based on this comparison, we propose improvements to the simple line‐by‐line thresholding event‐detection scheme, which is commonly used for single‐mobile‐particle detection. We show that an optimal combination of imaging and analysis parameters allows the reliable detection of fluorescent liposomes for concentrations between 1 and 100 pM . This result confirms the importance of confocal single‐particle detection as a complementary technique to ensemble fluorescence‐correlation techniques for the studies of mobile particle. 相似文献
10.
Leila Peraro Assoc. Prof. Joshua A. Kritzer 《Angewandte Chemie (International ed. in English)》2018,57(37):11868-11881
Biomolecules such as antibodies, proteins, and peptides are important tools for chemical biology and leads for drug development. They have been used to inhibit a variety of extracellular proteins, but accessing intracellular proteins has been much more challenging. In this review, we discuss diverse chemical approaches that have yielded cell‐penetrant peptides and identify three distinct strategies: masking backbone amides, guanidinium group patterning, and amphipathic patterning. We summarize a growing number of large data sets, which are starting to reveal more specific design guidelines for each strategy. We also discuss advantages and disadvantages of current methods for quantifying cell penetration. Finally, we provide an overview of best‐odds approaches for applying these new methods and design principles to optimize cytosolic penetration for a given bioactive peptide. 相似文献
11.
Model membrane systems have become invaluable tools to investigate specific features of cellular membranes. Although a variety of different experimental assays does exist, many of them are rather complicated in their preparation and difficult in their practical realisation. Here, we propose a new simple miniaturised monolayer assay that can easily be combined with standard analytical techniques such as confocal fluorescence microscopy and fluorescence correlation spectroscopy (FCS). 相似文献
13.
Incorporation of a Non‐Natural Arginine Analogue into a Cyclic Peptide Leads to Formation of Positively Charged Nanofibers Capable of Gene Transfection
下载免费PDF全文

Mao Li Martin Ehlers Stefanie Schlesiger Elio Zellermann Prof. Shirley K. Knauer Prof. Carsten Schmuck 《Angewandte Chemie (International ed. in English)》2016,55(2):598-601
Functionalization of the tetracationic cyclic peptide (Ka)4 with a single guanidiniocarbonyl pyrrole (GCP) moiety, a weakly basic but highly efficient arginine analogue, completely alters the self‐assembly properties of the peptide. In contrast to the nonfunctionalized peptide 2 , which does not self‐assemble, GCP‐containing peptide 1 forms cationic nanofibers of micrometer length. These aggregates are efficient gene transfection vectors. DNA binds to their cationic surface and is efficiently delivered into cells. 相似文献
14.
15.
Radchatawedchakoon W Krajarng A Niyomtham N Watanapokasin R Yingyongnarongkul BE 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(11):3287-3295
The ability of a nonviral gene delivery system to overcome extra- and intracellular barriers is a critical issue for the future clinical applications of gene therapy. In recent years much effort has been focused on the development of a variety of DNA carriers, and cationic liposomes have become the most common nonviral gene delivery system. One hundred and eighty novel cationic lipids with asymmetric acyl-cholesteryl hydrophobic tails were synthesized by parallel solid-phase chemistry. The liposomes were prepared and gel retardation assays were used to study the binding efficiency between the prepared liposome and the DNA. Transfection efficiencies of the lipids were evaluated against various mammalian cells, such as human embryonic kidney (HEK293), human cervical adenocarcinoma (HeLa), canine osteosarcoma (D17), colorectal adenocarcinoma (COLO 205), and human prostate adenocarcinoma (PC3) cells. The lipids with an acyl portion at the terminal part of the polyamine backbone exhibited higher transfection efficiency than those with the acyl portion as an internal part of the backbone. These compounds also showed higher transfection efficiency and lower cytotoxicity than the commercially available agents, Effectene, DOTAP, and DC-Chol. 相似文献
16.
17.
Wu C Belenda C Leroux JC Gauthier MA 《Chemistry (Weinheim an der Bergstrasse, Germany)》2011,17(36):10064-10070
The interplay between the chemical microenvironment surrounding disulfides and the redox environment of the media on thiol-disulfide exchange kinetics was examined by using a peptide platform. Exchange kinetics of up to 34 cysteine-containing peptides were measured in several redox buffers. The electrostatic attraction/repulsion between charged peptides and reducing agents such as glutathione was found to have a very pronounced effect on thiol-disulfide exchange kinetics (differences of ca. three orders of magnitude). Exchange kinetics could be directly correlated to peptide charge over the entire range examined. This study highlights the possibility of finely and predictably tuning thiol-disulfide exchange, and demonstrates the importance of considering both the local environment surrounding the disulfide and the nature of the major reducing species present in the environment for which their use is intended (e.g., in drug delivery systems, sensors, etc). 相似文献
18.
Tiffany O. Paulisch Dr. Steffen Bornemann Marius Herzog Sergej Kudruk Dr. Lena Roling Anna Livia Linard Matos Prof. Dr. Hans-Joachim Galla Prof. Dr. Volker Gerke Prof. Dr. Roland Winter Prof. Dr. Frank Glorius 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(71):17176-17182
A dicationic imidazolium salt is described and investigated towards its application for gene transfer. The polar head group and the long alkyl chains in the backbone contribute to a lipid-like behavior, while an alkyl ammonium group provides the ability for crucial electrostatic interaction for the transfection process. Detailed biophysical studies regarding its impact on biological membrane models and the propensity of vesicle fusion are presented. Fluorescence spectroscopy, atomic force microscopy and confocal fluorescence microscopy show that the imidazolium salt leads to negligible changes in lipid packing, while displaying distinct vesicle fusion properties. Cell culture experiments reveal that mixed liposomes containing the novel imidazolium salt can serve as plasmid DNA delivery vehicles. In contrast, a structurally similar imidazolium salt without a second positive charge showed no ability to support DNA transfection into cultured cells. Thus, we introduce a novel and variable structural motif for cationic lipids, expanding the field of lipofection agents. 相似文献
19.
Dr. Zhigang Xu Dongdong Wang Shuang Xu Dr. Xiaoyan Liu Prof. Dr. Xiaoyu Zhang Prof. Dr. Haixia Zhang 《化学:亚洲杂志》2014,9(1):199-205
We present here a novel camptothecin (CPT) prodrug based on polyethylene glycol monomethyl ether‐block‐poly(2‐methacryl ester hydroxyethyl disulfide‐graft‐CPT) (MPEG‐SS‐PCPT). It formed biocompatible nanoparticles (NPs) with diameters of approximately 122 nm with a CPT loading content as high as approximately 25 wt % in aqueous solution. In in vitro release studies, these MPEG‐SS‐PCPT NPs could undergo triggered disassembly and much faster release of CPT under glutathione (GSH) stimulus than in the absence of GSH. The CPT prodrug had high antitumor activity, and another anticancer drug, doxorubicin hydrochloride (DOX ? HCl), could also be introduced into the prodrug with a high loading amount. The DOX ? HCl‐loaded CPT prodrug could deliver two anticancer drugs at the same time to produce a collaborative cytotoxicity toward cancer cells, which suggested that this GSH‐responsive NP system might become a promising carrier to improve drug‐delivery efficacy. 相似文献
20.
Amir RJ Albertazzi L Willis J Khan A Kang T Hawker CJ 《Angewandte Chemie (International ed. in English)》2011,50(15):3425-3429