首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic metathesis of C=C bonds is a textbook reaction that has no parallel in the widely studied area of multiple bonds involving heavier p-block elements. A high-yielding P=C bond metathesis of phosphaalkenes (ArP=CPh2, Ar=Mes, o-Tol, Ph) has been discovered that is catalyzed by N-heterocyclic carbenes (NHC=Me2IMe, Me2IiPr). The products are cyclic oligomers formally derived from ArP=PAr [i. e. cyclo-(ArP)n; n=3, 4, 5, 6] and Ph2C=CPh2. Preliminary mechanistic studies of this remarkable transformation have established NHC=PAr (Ar=Mes, o-Tol, Ph) as key phosphinidene transfer agents. In addition, novel cyclic intermediates, such as, cyclo-(ArP)2CPh2 and cyclo-(ArP)4CPh2 have also been observed. This work represents a rare application of non-metal-based catalysts for transformations involving main-group elements.  相似文献   

2.
The role of intramolecular metal???π‐arene interactions has been investigated in the solid‐state structures of a series of main group compounds supported by the bulky amide ligands, [N(tBuAr)(SiR3)]? (tBuAr=2,6‐(CHPh2)2‐4‐tBuC6H2, R=Me, Ph). The lithium and potassium amide salts showed different patterns of solvation and demonstrated that the SiPh3 substituent is able to be involved in stabilizing the electrophilic metal. These group 1 metal compounds served as ligand transfer reagents to access a series of bismuth(III) halides. Chloride extraction from Bi(N{tBuAr}{SiPh3})Cl2 using AlCl3 afforded the 1:1 salt [Bi(N{tBuAr}{SiPh3})Cl][AlCl4]. This was accompanied by a significant rearrangement of the stabilizing π‐arene contacts in the solid‐state. Attempted preparation of the corresponding tetraphenylborate salt resulted in phenyl‐transfer and generation of the neutral Bi(N{tBuAr}{SiPh3})(Ph)Cl.  相似文献   

3.
A series of solvent-free heteroleptic terminal rare-earth-metal alkyl complexes stabilized by a superbulky tris(pyrazolyl)borato ligand with the general formula [TptBu,MeLnMeR] have been synthesized and fully characterized. Treatment of the heterobimetallic mixed methyl/tetramethylaluminate compounds [TptBu,MeLnMe(AlMe4)] (Ln=Y, Lu) with two equivalents of the mild halogenido transfer reagents SiMe3X (X=Cl, I) gave [TptBu,MeLnX2] in high yields. The addition of only one equivalent of SiMe3Cl to [TptBu,MeLuMe(AlMe4)] selectively afforded the desired mixed methyl/chloride complex [TptBu,MeLuMeCl]. Further reactivity studies of [TptBu,MeLuMeCl] with LiR or KR (R=CH2Ph, CH2SiMe3) through salt metathesis led to the monomeric mixed-alkyl derivatives [TptBu,MeLuMe(CH2SiMe3)] and [TptBu,MeLuMe(CH2Ph)], respectively, in good yields. The SiMe4 elimination protocols were also applicable when using SiMe3X featuring more weakly coordinating moieties (here X=OTf, NTf2). X-ray structure analyses of this diverse set of new [TptBu,MeLnMeR/X] compounds were performed to reveal any electronic and steric effects of the varying monoanionic ligands R and X, including exact cone-angle calculations of the tridentate tris(pyrazolyl)borato ligand. Deeper insights into the reactivity of these potential precursors for terminal alkylidene rare-earth-metal complexes were gained through NMR spectroscopic studies.  相似文献   

4.
The reactions of PhCH2SiMe3 ( 1 ), PhCH2SiMe2tBu ( 2 ), PhCH2SiMe2Ph ( 3 ), 3,5‐Me2C6H3CH2SiMe3 ( 4 ), and 3,5‐Me2C6H3CH2SiMe2tBu ( 5 ) with nBuLi in tetramethylethylenediamine (tmeda) afford the corresponding lithium complexes [Li(tmeda)][CHRSiMe2R′] (R, R′ = Ph, Me ( 6 ), Ph, tBu ( 7 ), Ph, Ph ( 8 ), 3,5‐Me2C6H3, Me ( 9 ), and 3,5‐Me2C6H3, tBu ( 10 )), respectively. The new compounds 5 , 7 , 8 , 9 and 10 have been characterized by 1H and 13C NMR spectroscopy, compounds 7 , 8 and 9 also by X‐ray structure analysis.  相似文献   

5.
The reactions of CO2 with a series of phosphinoboranes, including R2PBpin (R=Ph, tBu; pin=pinacol), R2PBMes2 (R=Ph, tBu; Mes=2,4,6-Me3-C6H2), and R2PBcat (R=Ph, tBu, Mes; cat=catechol) are described. Although R2PBpin and R2PBMes2 afford products of the form R2PCO2Bpin (R=Ph 1 , tBu 4 ) and R2PCO2BMes2 (R=Ph 2 , tBu 3 ), respectively, R2PBcat lead to further reaction affording the diphospha-ureas, (R2P)2CO (R=Ph 5 , tBu 6 , Mes 7 ), together with O(Bcat)2. Computational studies provide insight into the mechanism, revealing an intermediate derived from double phosphinoboration of CO2.  相似文献   

6.
The reaction of monomeric [(TptBu,Me)LuMe2] (TptBu,Me=tris(3‐Me‐5‐tBu‐pyrazolyl)borate) with primary aliphatic amines H2NR (R=tBu, Ad=adamantyl) led to lutetium methyl primary amide complexes [(TptBu,Me)LuMe(NHR)], the solid‐state structures of which were determined by XRD analyses. The mixed methyl/tetramethylaluminate compounds [(TptBu,Me)LnMe({μ2‐Me}AlMe3)] (Ln=Y, Ho) reacted selectively and in high yield with H2NR, according to methane elimination, to afford heterobimetallic complexes: [(TptBu,Me)Ln({μ2‐Me}AlMe2)(μ2‐NR)] (Ln=Y, Ho). X‐ray structure analyses revealed that the monomeric alkylaluminum‐supported imide complexes were isostructural, featuring bridging methyl and imido ligands. Deeper insight into the fluxional behavior in solution was gained by 1H and 13C NMR spectroscopic studies at variable temperatures and 1H–89Y HSQC NMR spectroscopy. Treatment of [(TptBu,Me)LnMe(AlMe4)] with H2NtBu gave dimethyl compounds [(TptBu,Me)LnMe2] as minor side products for the mid‐sized metals yttrium and holmium and in high yield for the smaller lutetium. Preparative‐scale amounts of complexes [(TptBu,Me)LnMe2] (Ln=Y, Ho, Lu) were made accessible through aluminate cleavage of [(TptBu,Me)LnMe(AlMe4)] with N,N,N′,N′‐tetramethylethylenediamine (tmeda). The solid‐state structures of [(TptBu,Me)HoMe(AlMe4)] and [(TptBu,Me)HoMe2] were analyzed by XRD.  相似文献   

7.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

8.
Abstract

P.P-Dialkylthiophosphinsäureamide R2P(S)NHR' (R=Me, 'Pr, 'Bu; R'=Me, Et, iPr. cHex. tBu. Ph. etc.) wurden erhalten durch Umsetzung von R2PNHR' mit Schwefel oder durch Reaktion von Me2P(S)CI mit primaren Aminen. Ihre 31P- und 13C-NMR-Spektren werden diskutiert. Insbesondere die Di-t-butylthiophosphinsäureamide sind auszilg;ergewöhnlich stabil gegen Hydrolyse und Luftsauerstoff. P,P-Dialkylthiophosphinic acid amides R2P(S)NHR' (R=Me. iPr. tBu; R'=Me, Et, iPr, cHex. tBu, Ph. etc.) have been obtained by reaction of the corresponding aminophosphines with sulfur or by reaction of dimethylthiophosphorylhalides with primary amines. Their 31P- and 13C-NMR spectra are discussed. The di-t-butylthiophosphinic compounds proved to be remarkably stable against moisture and oxygen.  相似文献   

9.
Deprotonation of the aminophosphanes Ph2PN(H)R 1a – 1h [R = tBu ( 1a ), 1‐adamantyl ( 1b ), iPr ( 1c ), CPh3 ( 1d ), Ph ( 1e ), 2,4,6‐Me3C6H2 (Mes) ( 1f ), 2,4,6‐tBu3C6H2 (Mes*) ( 1g ), 2,6‐iPr2C6H3 (DIPP) ( 1h )], followed by reactions of the phosphanylamide salts Li[Ph2PNR] 2a , 2b , 2g , and 2h with the P‐chlorophosphaalkene (Me3Si)2C=PCl, and of 2a – 2g with (iPrMe2Si)2C=PCl, gave the isolable P‐phosphanylamino phosphaalkenes (Me3Si)2C=PN(R)PPh2 3a , 3b , 3g , and (iPrMe2Si)2C=PN(R)PPh2 4a – 4g . 31P NMR spectra, supported by X‐ray structure determinations, reveal that in compounds 2a , 2b , 3a , and 3b , with bulky N‐alkyl groups the Si2C=P–N–P skeleton is non‐planar (orthogonal conformation), whereas 3g , 3h , and 4g with bulky N‐aryl groups exhibit planar conformations of the Si2C=P–N–P skeleton. Solid 3g and 4g exhibit cisoid orientation of the planar C=P–N–C units (planar I) but in solid 3h the transoid rotamer is present (planar II). From 3g , 4d , and 4g mixtures of rotamers were detected in solution by pairs of 31P NMR patterns ( 3h : line broadening).  相似文献   

10.
The bis(amidodimethyl)disiloxane antimony chlorides Sb(NONR)Cl (NONR=[O(SiMe2NR)2]2−; R=tBu, Ph, 2,6-Me2C6H3=Dmp, 2,6-iPr2C6H3=Dipp, 2,6-(CHPh2)2-4-tBuC6H2=tBu-Bhp) are reduced to SbII and SbI species by using MgI reagents, [Mg(BDIR′)]2 (BDI=[HC{C(Me)NR′}2]; R′=2,4,6-Me3C6H2=Mes, Dipp). Stoichiometric reactions with Sb(NONR)Cl (R=tBu, Ph) form dimeric SbII stibanes [Sb(NONR)]2, shown crystallographically to contain Sb−Sb single bonds. The analogous distibane with R=Dmp substituents has an exceptionally long Sb−Sb interaction and exhibits spectroscopic and reactivity properties consistent with radical character in solution. When R=Dipp, reductions with MgI reagents directly give distibenes [Sb(μ-NONDipp)Mg(BDIR′)(THF)n]2 (R′=Mes, n=1; R′=Dipp, n=0). Crystallographic analysis shows a trans-substitution of the Sb=Sb double bond, with bridging NONDipp-ligands between the SbI and MgII centres. An attempt to access the NONPh-analogue using the same protocol afforded the polystibide cluster Sb8[μ4,η2:2:2:2-Mg(BDIMes)]4, which co-crystallized with the ligand transfer product, [Mg(BDIMes)]2(μ-NONPh).  相似文献   

11.
Amination of the C‐isopropyldimethylsilyl P‐chlorophosphaalkene (iPrMe2Si)2C=PCl ( 1 ) leads to the P‐aminophosphaalkenes (iPrMe2Si)2C=PN(R)R′ (R, R′ = Me ( 2 ), R = H, R′ = nPr ( 3 ), R = H, R′ = iPr ( 4 ), R = H, R′ = tBu ( 5 ), R = H, R′ = 1‐Ada ( 6 ), R = H, R′ = CPh3 ( 7 ), R = H, R′ = Ph ( 8 ), R = H, RR′ = 2,6‐iPr2Ph (= DIP) ( 10 ), R = H, R′ = 2,4,6‐Me3Ph (= Mes) ( 11 ), R = H, R′ = 2,4,6‐tBu3Ph (= Mes*)] ( 12 ), R = H, R′ = SiMe3 ( 13 ), and R, R′ = SiMe2Ph (1 4 ). 31P‐NMR spectra confirm that phosphaalkenes 2 – 7 and 10 – 14 are monomeric in solution; the structures of 7 , 10 , and 12 were determined by X‐ray crystallography. Freshly prepared (iPrMe2Si)2C=PN(H)Ph ( 8 ) is a monomer that dimerizes with (N→C) proton migration within several hours to the stable diazadiphosphetidine [(iPrMe2Si)2CHPNPh]2 ( 9 ). NMR‐scale reactions of deprotonated 5 and 13 with tBuiPrPCl provide by P–P bond formation the P‐phosphanyl iminophosphoranes [(iPrMe2Si)2C=](RN=)PPtBu(iPr) [R = tBu ( 15 ), R = Me3Si ( 17 )]. Deprotonated 5 and Me3GeCl deliver by N–Ge bond formation the aminophosphaalkene (iPrMe2Si)2C=PN(tBu)GeMe3 ( 20 ), which with elemental selenium 5 undergoes (N→C) proton migration to form the alkyl(imino)(seleno)phosphorane [(iPrMe2Si)2CH](tBuN=)P=Se ( 21 ), which is a selenium‐bridged cyclic dimer in the solid state.  相似文献   

12.
We report a detailed study of the reactions of the Ti?NNCPh2 alkylidene hydrazide functional group in [Cp*Ti{MeC(NiPr)2}(NNCPh2)] ( 8 ) with a variety of unsaturated and saturated substrates. Compound 8 was prepared from [Cp*Ti{MeC(NiPr)2}(NtBu)] and Ph2CNNH2. DFT calculations were used to determine the nature of the bonding for the Ti?NNCPh2 moiety in 8 and in the previously reported [Cp2Ti(NNCPh2)(PMe3)]. Reaction of 8 with CO2 gave dimeric [(Cp*Ti{MeC(NiPr)2}{μ‐OC(NNCPh2)O})2] and the “double‐insertion” dicarboxylate species [Cp*Ti‐{MeC(NiPr)2}{OC(O)N(NCPh2)C(O)O}] through an initial [2+2] cycloaddition product [Cp*Ti{MeC(NiPr)2}{N(NCPh2)C(O)O}], the congener of which could be isolated in the corresponding reaction with CS2. The reaction with isocyanates or isothiocyanates tBuNCO or ArNCE (Ar=Tol or 2,6‐C6H3iPr2; E=O, S) gave either complete NNCPh2 transfer, [2+2] cycloaddition to Ti?Nα or single‐ or double‐substrate insertion into the Ti?Nα bond. The treatment of 8 with isonitriles RNC (R=tBu or Xyl) formed σ‐adducts [Cp*Ti{MeC(NiPr)2}(NNCPh2)(CNR)]. With ArF5CCH (ArF5=C6F5) the [2+2] cycloaddition product [Cp*Ti{MeC(NiPr)2}{N(NCPh2)C(ArF5)C(H)}] was formed, whereas with benzonitriles ArCN (Ar=Ph or ArF5) two equivalents of substrate were coupled in a head‐to‐tail manner across the Ti?Nα bond to form [Cp*Ti{MeC(NiPr)2}{N(NCPh2)C(Ar)NC(Ar)N}]. Treatment of 8 with RSiH3 (R=aryl or Bu) or Ph2SiH2 gave [Cp*Ti{MeC(NiPr)2}{N(SiHRR′)N(CHPh2)}] (R′=H or Ph) through net 1,3‐addition of Si? H to the N? N?CPh2 linkage of 8 , whereas reaction with PhSiH2X (X=Cl, Br) led to the Ti?Nα 1,2‐addition products [Cp*Ti{MeC(NiPr)2}(X){N(NCPh2)SiH2Ph}].  相似文献   

13.
The first example of NO insertion into a Bi?C bond has been found in the direct reaction of NO with a Bi3+ complex of the unusual (C6H2tBu2‐3,5‐O‐4)2? oxyaryl dianionic ligand, namely, Ar′Bi(C6H2tBu2‐3,5‐O‐4) [Ar′=2,6‐(Me2NCH2)2C6H3] ( 1 ). The oximate complexes [Ar′Bi(ONC6H2‐3,5‐tBu2‐4‐O)]2(μ‐O) ( 3 ) and Ar′Bi(ONC6H2‐3,5‐tBu2‐4‐O)2 ( 4 ) were formed as a mixture, but can be isolated in pure form by reaction of NO with a Bi3+ complex of the [O2C(C6H2tBu2‐3‐5‐O‐4]2? oxyarylcarboxy dianion, namely, Ar′Bi[O2C(C6H2tBu2‐3‐5‐O‐4)‐κ2O,O’]. Reaction of 1 with Ph3CSNO gave an oximate product with (Ph3CS)1? as an ancillary ligand, (Ph3CS)(Ar′)Bi(ONC6H2‐3,5‐tBu2‐4‐O) ( 5 ).  相似文献   

14.
A series of Al(III) and Sn(II) diiminophosphinate complexes have been synthesized. Reaction of Ph(ArCH2)P(?NBut)NHBut (Ar = Ph, 3 ; Ar = 8‐quinolyl, 4 ) with AlR3 (R = Me, Et) gave aluminum complexes [R2Al{(NBut)2P(Ph)(CH2Ar)}] (R = Me, Ar = Ph, 5 ; R = Me, Ar = 8‐quinolyl, 6 ; R = Et, Ar = Ph, 7 ; R = Et, Ar = quinolyl, 8 ). Lithiated 3 and 4 were treated with SnCl2 to afford tin(II) complexes [ClSn{(NBut)2P(Ph)(CH2Ar)}] (Ar = Ph, 9 ; Ar = 8‐quinolyl, 10 ). Complex 9 was converted to [(Me3Si)2NSn{(NBut)2P(Ph)(CH2Ph)}] ( 11 ) by treatment with LiN(SiMe3)2. Complex 11 was also obtained by reaction of 3 with [Sn{N(SiMe3)2}2]. Complex 9 reacted with [LiOC6H4But‐4] to yield [4‐ButC6H4OSn{(NBut)2P(Ph)(CH2Ph)}] ( 12 ). Compounds 3–12 were characterized by NMR spectroscopy and elemental analysis. The structures of complexes 6 , 10 , and 11 were further characterized by single crystal X‐ray diffraction techniques. The catalytic activity of complexes 5–8 , 11 , and 12 toward the ring‐opening polymerization of ε‐caprolactone (CL) was studied. In the presence of BzOH, the complexes catalyzed the ring‐opening polymerization of ε‐CL in the activity order of 5 > 7 ≈ 8 > 6 ? 11 > 12 , giving polymers with narrow molecular weight distributions. The kinetic studies showed a first‐order dependency on the monomer concentration in each case. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4621–4631, 2006  相似文献   

15.
Chalcogen-bonded silicon phosphinidenes LSi(E)−P−MecAAC (E=S ( 1 ); Se ( 2 ); Te ( 3 ); L=PhC(NtBu)2; MecAAC=C(CH2)(CMe2)2N-2,6-iPr2C6H3)) were synthesized from the reactions of silylene–phosphinidene LSi−P−MecAAC ( A ) with elemental chalcogens. All the compounds reported herein have been characterized by multinuclear NMR, elemental analyses, LIFDI-MS, and single-crystal X-ray diffraction techniques. Furthermore, the regeneration of silylene–phosphinidene ( A ) was achieved from the reactions of 2 – 3 with L′Al (L′=HC{(CMe)(2,6-iPr2C6H3N)}2). Theoretical studies on chalcogen-bonded silicon phosphinidenes indicate that the Si−E (E=S, Se, Te) bond can be best represented as charge-separated electron-sharing σ-bonding interaction between [LSi−P−MecAAC]+ and E. The partial double-bond character of Si−E is attributed to significant hyperconjugative donation from the lone pair on E to the Si−N and Si−P σ*-molecular orbitals.  相似文献   

16.
One‐electron reduction of C2‐arylated 1,3‐imidazoli(ni)um salts (IPrAr)Br (Ar=Ph, 3 a ; 4‐DMP, 3 b ; 4‐DMP=4‐Me2NC6H4) and (SIPrAr)I (Ar=Ph, 4 a ; 4‐Tol, 4 b ) derived from classical NHCs (IPr=:C{N(2,6‐iPr2C6H3)}2CHCH, 1 ; SIPr=:C{N(2,6‐iPr2C6H3)}2CH2CH2, 2 ) gave radicals [(IPrAr)]. (Ar=Ph, 5 a ; 4‐DMP, 5 b ) and [(SIPrAr)]. (Ar=Ph, 6 a ; 4‐Tol, 6 b ). Each of 5 a , b and 6 a , b exhibited a doublet EPR signal, a characteristic of monoradical species. The first solid‐state characterization of NHC‐derived carbon‐centered radicals 6 a , b by single‐crystal X‐ray diffraction is reported. DFT calculations indicate that the unpaired electron is mainly located at the original carbene carbon atom and stabilized by partial delocalization over the adjacent aryl group.  相似文献   

17.
The primary phosphines MesPH2 and tBuPH2 react with 9-iodo-m-carborane yielding B9-connected secondary carboranylphosphines 1,7-H2C2B10H9-9-PHR (R=2,4,6-Me3C6H2 (Mes; 1 a ), tBu ( 1 b )). Addition of tris(pentafluorophenyl)borane (BCF) to 1 a , b resulted in the zwitterionic compounds 1,7-H2C2B10H9-9-PHR(p-C6F4)BF(C6F5)2 ( 2 a , b ) through nucleophilic para substitution of a C6F5 ring followed by fluoride transfer to boron. Further reaction with Me2SiHCl prompted a H−F exchange yielding the zwitterionic compounds 1,7-H2C2B10H9-9-PHR(p-C6F4)BH(C6F5)2 ( 3 a , b ). The reaction of 2 a , b with one equivalent of R'MgBr (R’=Me, Ph) gave the extremely water-sensitive frustrated Lewis pairs 1,7-H2C2B10H9-9-PR(p-C6F4)B(C6F5)2 ( 4 a , b ). Hydrolysis of the B−C6F4 bond in 4 a , b gave the first tertiary B-carboranyl phosphines with three distinct substituents, 1,7-H2C2B10H9-9-PR(p-C6F4H) ( 5 a , b ). Deprotonation of the zwitterionic compounds 2 a , b and 3 a , b formed anionic phosphines [1,7-H2C2B10H9-9-PR(p-C6F4)BX(C6F5)2][DMSOH]+ (R=Mes, X=F ( 6 a ), R=tBu, X=F ( 6 b ); R=Mes, X=H ( 7 a ), R=tBu, X=H ( 7 b )). Reaction of 2 a , b with an excess of Grignard reagents resulted in the addition of R’ at the boron atom yielding the anions [1,7-H2C2B10H9-9-PR(p-C6F4)BR’(C6F5)2] (R=Mes, R’=Me ( 8 a ), R=tBu, R’=Me ( 8 b ); R=Mes, R’=Ph ( 9 a ), R=tBu, R’=Ph ( 9 b )) with [MgBr(Et2O)n]+ as counterion. The ability of the zwitterionic compounds 3 a , b to hydrogenate imines as well as the Brønsted acidity of 3 a were investigated.  相似文献   

18.
Crystalline 1,4-distannabarrelene compounds [(ADCAr)3Sn2]SnCl3 ( 3 - Ar ) (ADCAr={ArC(NDipp)2CC}; Dipp=2,6-iPr2C6H3, Ar=Ph or DMP; DMP=4-Me2NC6H4) derived from anionic dicarbenes Li(ADCAr) ( 2 - Ar ) (Ar=Ph or DMP) have been reported. The cationic moiety of 3 - Ar features a barrelene framework with three coordinated SnII atoms at the 1,4-positions, whereas the anionic unit SnCl3 is formally derived from SnCl2 and chloride ion. The all carbon substituted bis-stannylenes 3 - Ar have been characterized by NMR spectroscopy and X-ray diffraction. DFT calculations reveal that the HOMO of 3 - Ph (ϵ=−6.40 eV) is mainly the lone-pair orbital at the SnII atoms of the barrelene unit. 3 - Ar readily react with sulfur and selenium to afford the mixed-valence SnII/SnIV compounds [(ADCAr)3SnSn(E)](SnCl6)0.5 (E=S 4 - Ar , Ar=Ph or DMP; E=Se 5 - Ph ).  相似文献   

19.
A chromium(I) dinitrogen complex reacts rapidly with O2 to form the mononuclear dioxo complex [TptBu,MeCrV(O)2] (TptBu,Me=hydrotris(3‐tert‐butyl‐5‐methylpyrazolyl)borate), whereas the analogous reaction with sulfur stops at the persulfido complex [TptBu,MeCrIII(S2)]. The transformation of the putative peroxo intermediate [TptBu,MeCrIII(O2)] (S=3/2) into [TptBu,MeCrV(O)2] (S=1/2) is spin‐forbidden. The minimum‐energy crossing point for the two potential energy surfaces has been identified. Although the dinuclear complex [(TptBu,MeCr)2(μ‐O)2] exists, mechanistic experiments suggest that O2 activation occurs on a single metal center, by an oxidative addition on the quartet surface followed by crossover to the doublet surface.  相似文献   

20.
Group 4 complexes containing diphosphinoamide ligands [Ph2PNR]2MCl2 (3: R = tBu, M = Ti; 4: R = tBu, M = Zr; 5: R = Ph, M = Ti; 6: R = Ph, M = Zr) were prepared by the reaction of MCl4 (M = Ti; Zr) with the corresponding lithium phosphinoamides in ether or THF. The structure of [Ph2PNtBu]2TiCl2 (3) was determined by X‐ray crystallography. The phosphinoamides functioned as η2‐coordination ligands in the solid state and the Ti? N bond length suggests it is a simple single bond. In the presence of modified methylaluminoxane or i‐Bu3Al/Ph3BC(C6F5)4, catalytic activity of up to 59.5 kg PE/mol cat h bar was observed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号