首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frustrated Lewis pairs (FLPs) have a great potential for activation of small molecules. Most known FLP systems are based on boron or aluminum atoms as acid functions, few on zinc, and only two on boron‐isoelectronic silicenium cation systems. The first FLP system based on a neutral silane, (C2F5)3SiCH2P(tBu)2 ( 1 ), was prepared from (C2F5)3SiCl with C2F5 groups of very high electronegativity and LiCH2P(tBu)2. 1 is capable of cleaving hydrogen, and adds CO2 and SO2. Hydrogen splitting was confirmed by H/D scrambling reactions. The structures of 1 , its CO2 and SO2 adducts, and a decomposition product with CO2 were elucidated by X‐ray diffraction.  相似文献   

2.
3.
The geminal frustrated Lewis pair (FLP) (F5C2)3SnCH2P(tBu)2 ( 2 ) was prepared by reacting (F5C2)3SnCl with LiCH2P(tBu)2. It is neutral and contains an extremely electronegatively substituted, but relatively soft (hard–soft acid–base, HSAB) acidic tin function. Its FLP‐type reactivity was proven by reaction with a variety of small molecules (CO2, SO2, CS2, PhNCO, HCl, (Ph3P)AuCl). However, it shows no reaction in H/D scrambling experiments with H2/D2 mixtures and binds CO2 reversibly, as was observed by VT‐NMR spectroscopy. Compound 2 and all its adducts were completely characterized by means of multinuclear NMR spectroscopy, elemental analysis, and X‐ray diffraction experiments.  相似文献   

4.
Chlorogermane (C2F5)3GeCl with very electronegative pentafluoroethyl groups was converted with LiCH2P(tBu)2 to obtain the intramolecular frustrated Lewis pair (FLP) (C2F5)3GeCH2P(tBu)2, a neutral, germanium-based FLP. Its reactivity was compared to its silicon homologue (C2F5)3SiCH2P(tBu)2. Both FLPs cleave NO but give cyclic (Si) and open-chain oxides (Ge). In reactions with HCl both FLPs gave the same adduct type in the solid state, while the proton seems more mobile in solution in the germanium case. Reactions with PhCNO and Me3SiCHN2 result in ring-type adducts. The structures of (C2F5)3GeCH2P(tBu)2 and of five adducts with substrates were elucidated by X-ray diffraction. The study clearly showed the germanium compound to have a more moderate Lewis acidity compared to the silicon analogue.  相似文献   

5.
D ‐(+)‐Camphor forms the enamine 2 with piperidine. Compound 2 adds HB(C6F5)2 at the enamine carbon atom C3 to form a Lewis acid/Lewis base adduct (exo‐/endo‐isomers of 3 ). Exposure of 3 to dihydrogen (2.5 bar, room temperature) leads to heterolytic splitting of H2 to form the H+/H? addition products ( 4 , two diastereoisomers) of the “invisible” frustrated Lewis pairs ( 5 , two diastereoisomers) that were apparently generated in situ by enamine hydroboration under equilibrium conditions.  相似文献   

6.
A joint experimental/computational effort to elucidate the mechanism of dihydrogen activation by a gold(I)/platinum(0) metal-only frustrated Lewis pair (FLP) is described herein. The drastic effects on H2 activation derived from subtle ligand modifications have also been investigated. The importance of the balance between bimetallic adduct formation and complete frustration has been interrogated, providing for the first time evidence for genuine metal-only FLP reactivity in solution. The origin of a strong inverse kinetic isotopic effect has also been clarified, offering further support for the proposed bimetallic FLP-type cleavage of dihydrogen.  相似文献   

7.
Jun Zhu 《化学:亚洲杂志》2019,14(9):1413-1417
Molecular nitrogen (N2) is abundant in the atmosphere and, found in many biomolecules, an essential element of life. The Haber–Bosch process, developed over 100 years ago, requires relatively harsh conditions to activate N2 on the iron surface and generate ammonia for use as fertilizer or to produce other chemicals, leading to consumption of more than 2 % of the world's annual energy supply. Thus, developing “green” approaches for N2 activation under mild conditions is particularly important and urgent. Here we demonstrate that a metal‐free N2 activation could be favorable both thermodynamically and kinetically (with an activation energy as low as 9.1 kcal mol?1) by using a carbon‐boron formal frustrated Lewis pair, which is supported by high‐level coupled cluster calculations. Mechanistic studies reveal that aromaticity plays a crucial role in stabilizing both the transition state and the product. Our findings highlight the importance of a combination of an N‐heterocyclic carbene with a methyleneborane unit in metal‐free N2 activation, providing conceptual guidance for experimental realization.  相似文献   

8.
Persistent radicals undergo hydrogen atom abstraction reactions with a great variety of substrates, but not with dihydrogen. It has now been found that the TEMPO radical splits dihydrogen under mild conditions in the presence of the strong bulky B(C6F5)3 boron Lewis acid. The reaction is thought to proceed by a typical frustrated Lewis pair mechanism with the TEMPO radical acting as the active Lewis base. The reaction was analyzed by DFT, which indicates that no significant spin density on the hydrogen atoms is accumulated along the H2 splitting reaction path.  相似文献   

9.
The primary phosphines MesPH2 and tBuPH2 react with 9-iodo-m-carborane yielding B9-connected secondary carboranylphosphines 1,7-H2C2B10H9-9-PHR (R=2,4,6-Me3C6H2 (Mes; 1 a ), tBu ( 1 b )). Addition of tris(pentafluorophenyl)borane (BCF) to 1 a , b resulted in the zwitterionic compounds 1,7-H2C2B10H9-9-PHR(p-C6F4)BF(C6F5)2 ( 2 a , b ) through nucleophilic para substitution of a C6F5 ring followed by fluoride transfer to boron. Further reaction with Me2SiHCl prompted a H−F exchange yielding the zwitterionic compounds 1,7-H2C2B10H9-9-PHR(p-C6F4)BH(C6F5)2 ( 3 a , b ). The reaction of 2 a , b with one equivalent of R'MgBr (R’=Me, Ph) gave the extremely water-sensitive frustrated Lewis pairs 1,7-H2C2B10H9-9-PR(p-C6F4)B(C6F5)2 ( 4 a , b ). Hydrolysis of the B−C6F4 bond in 4 a , b gave the first tertiary B-carboranyl phosphines with three distinct substituents, 1,7-H2C2B10H9-9-PR(p-C6F4H) ( 5 a , b ). Deprotonation of the zwitterionic compounds 2 a , b and 3 a , b formed anionic phosphines [1,7-H2C2B10H9-9-PR(p-C6F4)BX(C6F5)2][DMSOH]+ (R=Mes, X=F ( 6 a ), R=tBu, X=F ( 6 b ); R=Mes, X=H ( 7 a ), R=tBu, X=H ( 7 b )). Reaction of 2 a , b with an excess of Grignard reagents resulted in the addition of R’ at the boron atom yielding the anions [1,7-H2C2B10H9-9-PR(p-C6F4)BR’(C6F5)2] (R=Mes, R’=Me ( 8 a ), R=tBu, R’=Me ( 8 b ); R=Mes, R’=Ph ( 9 a ), R=tBu, R’=Ph ( 9 b )) with [MgBr(Et2O)n]+ as counterion. The ability of the zwitterionic compounds 3 a , b to hydrogenate imines as well as the Brønsted acidity of 3 a were investigated.  相似文献   

10.
Frustrated Lewis pair chemistry has taken a steep development in the recent years. It offers possibilities of developing new variants of known reactions and of finding new chemical transformations. This is demonstrated and described by the recently developed FLP‐formylborane chemistry, which has led to the formation of the unique (η2‐formylborane)FLP adducts and opened a way of preparing a genuine formylborane compound, which shows an interesting follow‐up chemistry. FLPs have helped finding phosphorus analogues of the enamine Stork reaction and the Claisen reaction. These reactions lead to new organophosphorus compounds and they make new phosphane/borane systems available. P/B FLPs add to a variety of small main group element oxides. They undergo 1,2‐addition reactions to CO2, SO2 and other heterocumulenes and they feature unique 1,1‐addition reactions to carbon monoxide, to isonitriles and even to nitric oxide (NO), the latter yielding examples of a new class of persistent nitroxide radicals, the FLPNO nitroxyls. Eventually, some remarkable radical reactions of FLPs and related compounds are briefly mentioned.  相似文献   

11.
[Cp*Rh(κ3N,N′,P- L )][SbF6] (Cp*=C5Me5), bearing a guanidine-derived phosphano ligand L , behaves as a “dormant” frustrated Lewis pair and activates H2 and H2O in a reversible manner. When D2O is employed, a facile H/D exchange at the Cp* ring takes place through sequential C(sp3)−H bond activation.  相似文献   

12.
Silyl triflates of the form R4?nSi(OTf)n (n=1, 2; OTf=OSO3CF3) are shown to activate carbon dioxide when paired with bulky alkyl‐substituted Group 15 bases. Combinations of silyl triflates and 2,2,6,6‐tetramethylpiperidine react with CO2 to afford silyl carbamates via a frustrated Lewis pair‐type mechanism. With trialkylphosphines, the silyl triflates R3Si(OTf) reversibly bind CO2 affording [R′3P(CO2)SiR3][OTf] whereas when Ph2Si(OTf)2 is used one or two molecules of CO2 can be sequestered. The latter bis‐CO2 product is favoured at low temperatures and by excess phosphine.  相似文献   

13.
Boranes R2BH react with carbon monoxide by forming the respective borane carbonyl compounds R2BH(CO). The formation of (C6F5)2BH(CO) derived from the Piers borane, HB(C6F5)2, is a typical example. Subsequent CO‐hydroboration does not take place, since the formation of the formylborane is usually endothermic. However, an “η2‐formylborane” was formed by CO‐hydroboration with the Piers borane at vicinal phosphane/borane frustrated Lewis pair (FLP) templates. Subsequent treatment with pyridine liberated the intact formylborane from the FLP framework, and (pyridine)(C6F5)2B? CHO was then isolated as a stable compound. This product underwent typical reactions of carbonyl compounds, such as Wittig olefination.  相似文献   

14.
15.
The combination of phosphorus(V)‐based Lewis acids with diaryl amines and diaryl silylamines promotes reversible activation of dihydrogen and can be further exploited in metal‐free catalytic olefin hydrogenation. Combined experimental and density functional theory (DFT) studies suggest a frustrated Lewis pair type activation mechanism.  相似文献   

16.
Frustrated Lewis pairs (FLPs) are combinations of Lewis acids and Lewis bases in solution that are deterred from strong adduct formation by steric and/or electronic factors. This opens pathways to novel cooperative reactions with added substrates. Small‐molecule binding and activation by FLPs has led to the discovery of a variety of new reactions through unprecedented pathways. Hydrogen activation and subsequent manipulation in metal‐free catalytic hydrogenations is a frequently observed feature of many FLPs. The current state of this young but rapidly expanding field is outlined in this Review and the future directions for its broadening sphere of impact are considered.  相似文献   

17.
Neutral phosphidozirconocene complexes [Cp2Zr(PR2)Me] (Cp=cyclopentadienyl; 1a : R=cyclohexyl (Cy); 1b : R=mesityl (Mes); 1c : R=tBu) undergo insertion into the Zr?P bond by non‐enolisable carbonyl building blocks (O=CR′R′′), such as benzophenone, aldehydes, paraformaldehyde or CO2, to give [Cp2Zr(OCR′R′′PR2)Me] ( 3 – 7 ). Depending on the steric bulk around P, complexes 3 – 7 react with B(C6F5)3 to give O‐bridged cationic zirconocene dimers that display typical frustrated Lewis pair (FLP)/ambiphilic ligand behaviour. Thus, the reaction of {[Cp2Zr(μ‐OCHPhPCy2)][MeB(C6F5)3]}2 ( 10a ) with chalcone results in 1,4 addition of the Zr+/P FLP, whereas the reaction of {[Cp2Zr(μ‐OCHFcPCy2)][MeB(C6F5)3]}2 ( 11a ; Fc=(C5H4)CpFe) with [Pd(η3‐C3H5)Cl]2 yields the unique Zr?Fe?Pd trimetallic complex 13a , which has been characterised by XRD analysis.  相似文献   

18.
Phosphagallenes ( 1 a / 1 b ) featuring double bonds between phosphorus and gallium were synthesized by reaction of (phosphanyl)phosphaketenes with the gallium carbenoid Ga(Nacnac) (Nacnac=HC[C(Me)N(2,6-i-Pr2C6H3)]2). The stability of these species is dependent on the saturation of the phosphanyl moiety. 1 a , which bears an unsaturated phosphanyl ring, rearranges in solution to yield a spirocyclic compound ( 2 ) which contains a P=P bond. The saturated variant 1 b is stable even at elevated temperatures. 1 b behaves as a frustrated Lewis pair capable of activation of H2 and forms a 1:1 adduct with CO2.  相似文献   

19.
The phosphorus/boron‐substituted hexatriene systems 6 undergo thermally induced electrocyclic ring closure to yield the cyclohexadiene‐derived P/B frustrated Lewis pairs (FLPs) 7 . Subsequent TEMPO oxidation gives the phenylene‐bridged FLPs 8 . Both systems activate dihydrogen and the thermally robust FLPs undergo carbon–carbon coupling reactions at a mesityl group upon treatment with dimethyl acetylenedicarboxylate at elevated temperatures.  相似文献   

20.
刘勇兵  杜海峰 《化学学报》2014,72(7):771-777
不对称催化氢化反应在有机合成化学中占有重要地位,是获得光学活性化合物最有效的手段之一. 近五十年,过渡金属催化的不对称氢化反应得到了快速发展,取得了令人瞩目的成就. 相对而言,非金属催化不对称氢化研究刚刚起步,面临着诸多挑战性难题. “受阻路易斯酸碱对”是由大位阻路易斯酸和路易斯碱组成,由于位阻因素,它们不能形成传统的路易斯酸碱加合物,从而表现出一些特殊的性质和反应活性. 自2006年Stephan小组首次发现“受阻路易斯酸碱对”可逆活化氢气以来,它在氢气,二氧化碳,一氧化氮等小分子活化及催化氢化方面得到了广泛应用. 同时,也为非金属催化的不对称氢化反应提供了难得的机遇,并取得了一些重要研究进展. 本文从手性底物诱导和手性催化剂控制两方面介绍“受阻路易斯酸碱对”在不对称氢化反应中的研究成果,并对这一新兴领域未来的发展进行展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号