首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
过量化石能源的消耗导致大气中的二氧化碳含量不断上升,由此引发包括温室效应在内的环境问题。对此,常温常压下的电催化二氧化碳还原手段为制备高附加值的化工原料和实现碳循环提供了一种很有前景的技术储备。在众多的二氧化碳还原产物中,碳氢化合物尤其是乙烯,它作为塑料和其他化工产品的重要原料受到广泛的关注。电催化二氧化碳还原制乙烯工艺不仅可适配于现有的生产设备也可作为取代目前工业化的裂解方法。近年来,研究者们为了开发高效的电催化二氧化碳还原制乙烯催化剂开展了大量的研究。不过值得注意的是,大部分研究集中于铜基材料。尽管目前研究者取得了很多成果,但仍缺少可高选择性产乙烯的二氧化碳还原催化剂。如何设计出可活化二氧化碳分子,同时对*CO和*COH中间物有强吸附能力的催化剂是研究难点。针对此问题,本文中通过真空蒸镀的方法制备出一种富氧空位的非晶氧化铜纳米薄膜催化剂。受益于纳米薄膜的构建和氧空位的引入,该催化剂可快速进行电荷和物质的交换,并利于二氧化碳分子的吸附及优化还原中间产物的亲和力,进而表现出优异的电催化二氧化碳制乙烯的性能。结果表明,在加有0.1 mol·L-1碳酸氢钾溶液的H型电...  相似文献   

2.
由CO2-氧化苯乙烯(StO)配位催化共聚制得脂肪族聚碳酸苯亚乙酯,并用 IR、1HNMR和 DSC等进行表征,用 TG对聚合物的热稳定性进行了分析。  相似文献   

3.
Converting carbon dioxide (CO2) into high-value fuels or chemicals is considered as a promising way to utilize CO2 and alleviate the excessive greenhouse gas emission. Among multiple catalysis approaches, electrochemical reduction of CO2 to ethanol has an important prospect due to the high energy density and widely applications of ethanol. In recent years, many electrocatalysts for CO2 reduce reaction (CO2RR) have shown promising catalytic activity for ethanol production. In this review, we will introduce the recent progress in this field. The basic principles and electrochemical performances of CO2RR are reviewed at first. Then, several categories of active electrocatalysts for CO2RR to ethanol are summarized, including the discussion of reaction mechanism and catalytic sites. Finally, several possible strategies are proposed, providing guidance for future design and preparation of high-performance catalysts.  相似文献   

4.
CuO/活性炭和Fe2O3/活性炭催化还原NO   总被引:4,自引:0,他引:4  
高志明  赵震 《应用化学》1996,13(4):77-79
CuO/活性炭和Fe_2O_3/活性炭催化还原NO高志明,赵震,杨向光,吴越(中国科学院长春应用化学研究所长春130022)关键词活性炭,还原,NO,氧化铜,氧化铁目前,对固定源的NO处理是采用V2O5/TiO2作催化剂,NH3作还原剂的选择催化还原方...  相似文献   

5.
A mechanistic study on the synthesis of propylene carbonate (PC) from CO2 and propylene oxide (PO) catalyzed by NbCl5 and organic nucleophiles such as 4‐dimethylaminopyridine (DMAP) or tetra‐n‐butylammonium bromide (NBu4Br) is reported. A combination of in situ spectroscopic techniques and kinetic studies has been used to provide detailed insight into the reaction mechanism, the formation of intermediates, and interactions between the reaction partners. The results of DFT calculations support the experimental observations and allow us to propose a mechanism for this reaction.  相似文献   

6.
Three-dimensional copper hydroxide nanosupercages and electrochemically reduced graphene oxide were used to modify the glassy carbon electrode for the selective determination of hydrogen peroxide. The morphology and electrochemistry properties of copper hydroxide nanosupercage/electrochemically reduced graphene oxide/glassy carbon electrode were characterized using transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra, Raman spectra, cyclic voltammetry, and electrochemical impedance spectroscopy. The resulting copper hydroxide nanosupercage/electrochemically reduced graphene oxide/glassy carbon electrode showed favorable performance for the electrocatalytic reduction of hydrogen peroxide. The amperometric current–time curve of the electrochemical sensor exhibited a wide linear range from 0.5 to 1030?µM with a limit of detection of 0.23?µM at a signal-to-noise ratio of three. Moreover, the sensor provided favorable selectivity, reproducibility, and stability and was used for the determination of H2O2 in tap water.  相似文献   

7.
8.
A stable and selective electrocatalyst for CO2 reduction was fabricated by covalently attaching graphitic carbon nitride onto multiwall carbon nanotubes (g‐C3N4/MWCNTs). The as‐prepared composite is able to reduce CO2 exclusively to CO with a maximum Faraday efficiency of 60 %, and no decay in the catalytic activity was observed even after 50 h of reaction. The enhanced catalytic activity towards CO2 reduction is attributed to the formation of active carbon–nitrogen bonds, high specific surface area, and improved material conductivity of the g‐C3N4/MWCNT composite.  相似文献   

9.
10.
采用密度泛函理论(DFT)方法研究了在还原剂(EtO)3SiH存在下, 铜(I) (Cl2IPrCuF)催化CO2插入1-苯基丙炔生成α,β不饱和羧酸的反应机理. 计算结果表明, Cl2IPrCuF 首先与(EtO)3SiH 生成活性催化剂Cl2IPrCuH,然后经历三个步骤完成催化反应: (1) Cl2IPrCuH 与1-苯基丙炔加成生成烯基铜中间体. 由于炔烃的不对称性,烯基铜中间体有两种同分异构体, 最后可导致生成两种对应的α,β不饱和羧酸衍生物; (2) CO2插入烯基铜中间体得到羧基铜中间体; (3) (EtO)3SiH 与羧基铜中间体发生σ转位反应形成最终产物, 同时重新生成催化剂Cl2IPrCuH. 理论研究还表明, 生成两种α,β不饱和羧酸衍生物的反应路径所对应的决速步骤不同, 在Path a 中炔烃插入反应和CO2插入反应都可能是整个催化反应的决速步骤, 自由能垒分别为68.6 和67.8 kJ·mol-1, 而在Path b中, 仅炔烃插入反应是整个催化反应的决速步骤, 自由能垒为78.7 kJ·mol-1. 此结果很好地给出了实验上两种α,β不饱和羧酸衍生物收率不同的原因. 炔烃与Cl2IPrCuH的加成决定了反应的区域选择性, 其中电子效应是影响反应区域选择性的主要原因.  相似文献   

11.
李渊  赵新强  王延吉 《催化学报》2004,25(8):633-636
 首次开发出对环氧丙烷、二氧化碳和甲醇合成碳酸二甲酯反应具有较高活性和稳定性的KOH/4A分子筛固体催化剂,考察了反应温度和催化剂活性组分KOH的负载量等因素对催化剂性能的影响. 在优化的实验条件下,环氧丙烷可以完全转化,碳酸二甲酯的收率为168%. 从实验结果推测,产物碳酸二甲酯是由环氧丙烷和二氧化碳加成生成碳酸丙烯酯,然后与甲醇发生酯交换反应生成的,甲醇对环氧丙烷和二氧化碳合成碳酸丙烯酯反应具有助催化作用.  相似文献   

12.
The present Review highlights the challenges and opportunities when using the combination CO2/H2 as a C1 synthon in catalytic reactions and processes. The transformations are classified according to the reduction level and the bond‐forming processes, covering the value chain from high volume basic chemicals to complex molecules, including biologically active substances. Whereas some of these concepts can facilitate the transition of the energy system by harvesting renewable energy into chemical products, others provide options to reduce the environmental impact of chemical production already in today's petrochemical‐based industry. Interdisciplinary fundamental research from chemists and chemical engineers can make important contributions to sustainable development at the interface of the energetic and chemical value chain. The present Review invites the reader to enjoy this exciting area of “catalytic chess” and maybe even to start playing some games in her or his laboratory.  相似文献   

13.
14.
15.
New graphene oxide (GO)‐tethered–CoII phthalocyanine complex [CoPc–GO] was synthesized by a stepwise procedure and demonstrated to be an efficient, cost‐effective and recyclable photocatalyst for the reduction of carbon dioxide to produce methanol as the main product. The developed GO‐immobilized CoPc was characterized by X‐ray diffraction (XRD), FTIR, XPS, Raman, diffusion reflection UV/Vis spectroscopy, inductively coupled plasma atomic emission spectroscopy (ICP‐AES), thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). FTIR, XPS, Raman, UV/Vis and ICP‐AES along with elemental analysis data showed that CoII–Pc complex was successfully grafted on GO. The prepared catalyst was used for the photocatalytic reduction of carbon dioxide by using water as a solvent and triethylamine as the sacrificial donor. Methanol was obtained as the major reaction product along with the formation of minor amount of CO (0.82 %). It was found that GO‐grafted CoPc exhibited higher photocatalytic activity than homogeneous CoPc, as well as GO, and showed good recoverability without significant leaching during the reaction. Quantitative determination of methanol was done by GC flame‐ionization detector (FID), and verification of product was done by NMR spectroscopy. The yield of methanol after 48 h of reaction by using GO–CoPc catalyst in the presence of sacrificial donor triethylamine was found to be 3781.8881 μmol g?1 cat., and the conversion rate was found to be 78.7893 μmol g?1cat. h?1. After the photoreduction experiment, the catalyst was easily recovered by filtration and reused for the subsequent recycling experiment without significant change in the catalytic efficiency.  相似文献   

16.
17.
负载型过渡金属(Co、Mo、Ni、W)硫化物催化剂广泛应用于石油炼制催化加氢过程。为了开发高性能的加氢催化剂,过渡金属硫化物催化剂催化活性相的结构与加氢脱硫性能的关系一直以来是催化研究的热点之一。本文从过渡金属硫化物催化剂的活性相结构和反应物在催化剂表面活性位上的吸附-催化反应机理两个方面阐述了过渡金属硫化物催化剂的催化作用研究进展,并对过渡金属硫化物催化剂催化机理研究存在的争议和未来的研究方向进行了分析。  相似文献   

18.
Electrochemical conversion of CO2 into fuels using electricity generated from renewable sources helps to create an artificial carbon cycle. However, the low efficiency and poor stability hinder the practical use of most conventional electrocatalysts. In this work, a 2D hierarchical Pd/SnO2 structure, ultrathin Pd nanosheets partially capped by SnO2 nanoparticles, is designed to enable multi‐electron transfer for selective electroreduction of CO2 into CH3OH. Such a structure design not only enhances the adsorption of CO2 on SnO2, but also weakens the binding strength of CO on Pd due to the as‐built Pd–O–Sn interfaces, which is demonstrated to be critical to improve the electrocatalytic selectivity and stability of Pd catalysts. This work provides a new strategy to improve electrochemical performance of metal‐based catalysts by creating metal oxide interfaces for selective electroreduction of CO2.  相似文献   

19.
The electrochemical reduction of CO2 into fuels has gained significant attention recently as source of renewable carbon‐based fuels. The unique high selectivity of copper in the electrochemical reduction of CO2 to hydrocarbons has called much interest in discovering its mechanism. In order to provide significant information about the role of oxygen in the electrochemical reduction of CO2 on Cu electrodes, the conditions of the surface structure and the composition of the Cu single crystal electrodes were controlled over time. This was achieved using pulsed voltammetry, since the pulse sequence can be programmed to guarantee reproducible initial conditions for the reaction at every fraction of time and at a given frequency. In contrast to the selectivity of CO2 reduction using cyclic voltammetry and chronoamperometric methods, a large selection of oxygenated hydrocarbons was found under alternating voltage conditions. Product selectivity towards the formation of oxygenated hydrocarbon was associated to the coverage of oxygen species, which is surface‐structure‐ and potential‐dependent.  相似文献   

20.
Electroreduction of CO2 into formic acid (HCOOH) is of particular interest as a hydrogen carrier and chemical feedstock. However, its conversion is limited by a high overpotential and low stability due to undesirable catalysts and electrode design. Herein, an integrated 3D bismuth oxide ultrathin nanosheets/carbon foam electrode is designed by a sponge effect and N-atom anchor for energy-efficient and selective electrocatalytic conversion of CO2 to HCOOH for the first time. Benefitting from the unique 3D array foam architecture for highly efficient mass transfer, and optimized exposed active sites, as confirmed by density functional theory calculations, the integrated electrode achieves high electrocatalytic performance, including superior partial current density and faradaic efficiency (up to 94.1 %) at a moderate overpotential as well as a high energy conversion efficiency of 60.3 % and long-term durability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号