首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an investigation into the proton conductivity of crystallized water clusters confined within low‐dimensional nanoporous materials, we have found that water‐stable nanoporous crystals are formed by complementary hydrogen bonding between [CoIII(H2bim)3]3+ (H2bim: 2,2′‐biimidazole) and TATC3? (1,3,5‐ tricarboxyl‐2,4,6‐triazinate); the O atoms in the ?COO? groups of TATC3? in the porous outer wall are strongly hydrogen bonded with H2O, forming two types of WMCs (water molecular clusters): a spirocyclic tetramer chain (SCTC) that forms infinite open 1D channels, and an isolated cyclic tetramer (ICT) present in the void space. The ICT is constructed from four H2O molecules as a novel C2‐type WMC, which are hydrogen bonded with four‐, three‐, and two‐coordination spheres, respectively. The largest structural fluctuation is observed at elevated temperatures from the two‐coordinated H2O molecules, which begin to rapidly and isotropically fluctuate on heating. This behavior can be rationalized by a simple model for the elucidation of pre‐melting phenomena, similar to those in ice surfaces as the temperature increases. Moreover, high proton conductivity of SCTCs (ca. 10?5 S cm?1 at 300 K with an activation energy of 0.30 eV) through a proton‐hole mechanism was observed for pellet samples using the alternating impedance method. The proton conductivity exhibits a slight enhancement of about 0.1×10?5 S cm?1 at 274 K due to a structural transition upon approaching this temperature that elongates the unit cell along the b‐axis. The proton‐transfer route can be predicted in WMCs, as O(4) of an H2O molecule at the center of an SCTC shows a motion that rotates the dipole in the b‐axis direction, but not the c‐axis; the thermal ellipsoids of O(4) based on anisotropic temperature factors obtained by X‐ray crystallography reflect a structural fluctuation along the b‐axis direction induced by [CoIII(H2bim)3]3+.  相似文献   

2.
3.
A new mechanism and formalism for proton transfer in donor-acceptor complexes with long hydrogen bonds introduced recently [1], is applied to a proton transfer in liquid water. Structural diffusion of hydroxonium ions is regarded as totally adiabatic process, with synchronous hindered translation of two closest water molecules to and from the reaction complex as crucial steps. The water molecules induce a gated shift of the proton from the donor to the acceptor in the double-well potential with simultaneous breaking/formation of hydrogen bonds between these molecules and the proton donor and acceptor. The short-range and long-range proton transfer as structural diffusion of Zundel complexes is also considered. The theoretical formalism is illustrated with the use of Morse, exponential, and harmonic molecular potentials. This approach is extended to proton transfer in strongly hydrogen-bonded donor-acceptor complexes. In contrast to the above model [1], the short hydrogen bond between the donor and acceptor moieties, however, completely erodes the barrier along the proton transfer mode. This introduces some physical pattern differences from proton transfer reactions in truly double-well potentials with a finite proton transfer barrier at the transition configuration with respect to the environmental nuclear coordinates. The differences apply particularly to the origin of the kinetic isotope effect. We discuss explicitly details of the excess proton conductivity in aqueous solution, but the concepts and formalism apply broadly to acid-base reactions, proton conduction channels, and other strongly hydrogen-bonded O- and N-proton donor-acceptor systems.  相似文献   

4.
5.
Herein, we study the preparation and characterization of a new kind of proton exchange membrane. In the proton‐conducting membrane of poly(vinylidene fluoride) (PVDF)/poly(ethylene oxide) (PEO)/dodecyl benzenesulfonic acid (DBS‐H), we use PEO as “proton solvent” due to its flexible molecular chain. Moreover, the electronegativity of the O atom on PEO may be used to attract protons under anhydrous conditions. The membranes are thermally stable up to 200 °C with less than 3 % mass loss. At 150 °C, without extra humidification, the proton conductivity of 60 % PVDF/22 % PEO/18 % DBS‐H membrane is approximately 10 ?3 S cm?1.  相似文献   

6.
7.
8.
Alcohols, the simplest amphiprotic organic compounds, can exhibit either acidic or basic behavior by donating or accepting a proton. In this study, proton dissociation of a model photoacid in solution is explored by using time‐resolved spectroscopy, revealing quantitatively for the first time that alcohol acts as a Brønsted base because of H‐bonded cluster formation to enhance the reactivity. The protonated alcohol cluster, the alkyl oxonium ion, can be regarded as a key reaction intermediate in the well‐established alcohol dehydration reaction. This finding signifies, as in water, the cooperativity of protic solvent molecules to facilitate nonaqueous acid–base reactions.  相似文献   

9.
Compared with green fluorescence protein (GFP) chromophores, the recently synthesized blue fluorescence protein (BFP) chromophore variant presents intriguing photochemical properties, for example, dual fluorescence emission, enhanced fluorescence quantum yield, and ultra‐slow excited‐state intramolecular proton transfer (ESIPT; J. Phys. Chem. Lett., 2014 , 5, 92); however, its photochemical mechanism is still elusive. Herein we have employed the CASSCF and CASPT2 methods to study the mechanistic photochemistry of a truncated BFP chromophore variant in the S0 and S1 states. Based on the optimized minima, conical intersections, and minimum‐energy paths (ESIPT, photoisomerization, and deactivation), we have found that the system has two competitive S1 relaxation pathways from the Franck–Condon point of the BFP chromophore variant. One is the ESIPT path to generate an S1 tautomer that exhibits a large Stokes shift in experiments. The generated S1 tautomer can further evolve toward the nearby S1/S0 conical intersection and then jumps down to the S0 state. The other is the photoisomerization path along the rotation of the central double bond. Along this path, the S1 system runs into an S1/S0 conical intersection region and eventually hops to the S0 state. The two energetically allowed S1 excited‐state deactivation pathways are responsible for the in‐part loss of fluorescence quantum yield. The considerable S1 ESIPT barrier and the sizable barriers that separate the S1 tautomers from the S1/S0 conical intersections make these two tautomers establish a kinetic equilibrium in the S1 state, which thus results in dual fluorescence emission.  相似文献   

10.
11.
Studies of 2‐(1H‐pyrazol‐5‐yl)pyridine (PPP) and its derivatives 2‐(4‐methyl‐1H‐pyrazol‐5‐yl)pyridine (MPP) and 2‐(3‐bromo‐1H‐pyrazol‐5‐yl)pyridine (BPP) by stationary and time‐resolved UV/Vis spectroscopic methods, and quantum chemical computations show that this class of compounds provides a rare example of molecules that exhibit three types of photoreactions: 1) excited‐state intramolecular proton transfer (ESIPT) in the syn form of MPP, 2) excited‐state intermolecular double‐proton transfer (ESDPT) in the dimers of PPP in nonpolar media, as well as 3) solvent‐assisted double‐proton transfer in hydrogen‐bonded 1:1 complexes of PPP and MPP with alcoholic partners. The excited‐state processes are manifested by the appearance of a dual luminescence and a bimodal irreversible kinetic coupling of the two fluorescence bands. Ground‐state syn–anti equilibria are detected and discussed. The fraction of the higher‐energy anti form varies for different derivatives and is strongly dependent on the solvent polarity and hydrogen‐bond donor or acceptor abilities.  相似文献   

12.
The effect of ionizing radiation on DNA constituents is a widely studied fundamental process using experimental and computational techniques. In particular, radiation effects on nucleobases are usually tackled by mass spectrometry in which the nucleobase is embedded in a water nanodroplet. Here, we present a multiscale theoretical study revealing the effects and the dynamics of water droplets towards neutral and ionized thymine. In particular, by using both hybrid quantum mechanics/molecular mechanics and full ab initio molecular dynamics, we reveal an unexpected proton transfer from thymine cation to a nearby water molecule. This leads to the formation of a neutral radical thymine and a Zundel structure, while the hydrated proton localizes at the interface between the deprotonated thymine and the water droplet. This observation opens entirely novel perspectives concerning the reactivity and further fragmentation of ionized nucleobases.  相似文献   

13.
A proton-conductive material based on a crystalline assembly of trimesic acid and melamine (TMA?M, see picture) is reported. Because of the ordered structure of the assembly, the water-saturated proton conductivity for the TMA?M assembly is 5.5?S?cm(-1) , which is the highest proton conductivity measured to date. This exceptionally high conductivity and low-cost fabrication of the material make applications feasible for fuel-cell devices.  相似文献   

14.
15.
Metathesis reaction of the dithioether complex cis‐[PtCl2{(PhSCH2)2SiPh2}] ( 2a ) with NaBr and NaI yields the square planar complexes cis‐[PtX2{(PhSCH2)2SiPh2}] ( 2b , X = Br; 2c , X = I). The new compounds, which are fluxional in solution, have been studied by multinuclear NMR techniques; the crystal structures of 2a‐c have been determined by X ray diffraction. This series allows to evaluate the trans‐influence of the halide ligands on the lengths of the Pt‐S bonds, which increase from 227.26(12) ( 2a ), 228.46(13) ( 2b ) to 229.96(15) ( 2c ) pm due to a more pronounced trans‐influence of I compared with Br and Cl. Complexation of (PhSCH2)2SiPh2 ( 1a ) on HgBr2 gives the distorted tetrahedral compound [HgBr2{(PhSCH2)2SiPh2}] ( 3 ), having a quite loose coordination of the ligand both in solution and in the solid state [Hg‐S = 291.88(2) pm]. Alternatively, the coordination around Hg may be described as distorted square pyramidal in the solid state, since to due to a weak intermolecular Hg···Br interaction [346.72(13) pm], a dimeric motif is formed. Furthermore, the functionalised cyclic silane (PhSCH2)2SiC4H6 ( 1b ) has been prepared and co‐ordinated as chelating dithioether ligands to [PtCl2(PhCN)2] affording the dithioether complex cis‐[PtCl2{(PhSCH2)2SiC4H6)}] ( 4 ). The crystal structure of 4 has also been determined by an X‐ray diffraction study.  相似文献   

16.
17.
以Ph3CB(C6F5)4/iBu3Al作为助催化体系,研究了单氯半茂型催化剂,ClCp′Zr[X-2-R1-4-R2-6-(Ph2P=O)C6H2]2(Cp′=C5H5,a:X=O,R1=Ph,R2=H;b:X=O,R1=F,R2=H;c:X=O,R1=tBu,R2=H;d:X=O,R1=R2=tBu;e:X=O,R1=SiMe3,R2=H;f:X=S,R1=SiMe3,R2=H;Cp′=C5Me5;g:X=O,R1=SiMe3,R2=H)的乙烯高温(50~125 ℃)聚合行为。 结果表明,催化剂a~d可在高温(50~100 ℃)下高效引发乙烯聚合,最佳反应温度为75 ℃。 适当增大R1取代基的位阻或引入吸电子取代基均有利于提高催化活性。 三甲基硅烷基取代的催化剂[WTHZ]e[WTBZ]耐高温性能较催化剂a~d大大提升,在100 ℃时,乙烯聚合活性可达5628 kg/(mol Zr·h)。 金属中心的配位原子及茂环上取代基团的改变对催化活性和聚合物的相对分子质量分布有一定的影响。  相似文献   

18.
采用樟脑衍生物为配体,分别合成了氰基桥联Cu(Ⅱ)-Fe(Ⅲ)-Cu(Ⅱ)三核配合物[{Cu(D,L-La)2}2Fe(CN)6](ClO4) (1)和Mn(Ⅲ)-Fe(Ⅲ)双核配合物[Mn(D,L-Lb)(DMF)(Tp)Fe(CN)3]·(H2O)6 (2)。晶体结构分析表明,化合物1中Cu(Ⅱ)离子处于五配位的配位环境,分别和1个D-La,1个L-La及[Fe(CN)6]3-中的1个氰基配位,2个Cu(Ⅱ)离子通过[Fe(CN)6]3-桥联。通过分子间氢键作用,化合物1形成二维超分子网络结构。化合物2中,[(Tp)Fe(CN)3]-通过其中的1个氰基与[Mn(D,L-Lb)]+桥联,其中Mn(Ⅲ)离子为六配位,分别和四齿配体Lb的2个氧原子和2个氮原子、DMF的1个氧原子及[(Tp)Fe(CN)3]-中的氰基氮原子配位。磁性研究表明,在化合物1中,Cu(Ⅱ)离子与Fe(Ⅲ)离子之间表现出铁磁相互作用,用哈密顿函数H=-2J(S1·S2+S2·S3)对其χMT-T曲线进行拟合,得到1的朗日因子g为2.190,交换常数J为0.55 cm-1。  相似文献   

19.
In this work, the dynamic character of hydrogen-bond (H-bond) networks in two three-component crystals comprising polycationic chains was described. The first studied system was 1,4-diazabicyclo[2.2.2]octan-1-ium (DABCOH+) sulfamate monohydrate, known for its large negative linear compressibility. The second analyzed material was the newly obtained polar salt co-crystal: 1,4-diazabicyclo[2.2.2]octan-1-ium sulfamate urea. X-ray diffraction measurements enabled us to study the H-bond systems in both crystals using the graph set analysis. Obtained structures served as the initial models for Born-Oppenheimer molecular dynamics computations. A detailed study of intermolecular interactions and power spectra was conducted. The analysis of time and space correlations between the changes in H-bonds enabled the detection of proton transfer occurring in both systems at 300 K. Further study of those dynamic phenomena was done using the Energy Decomposition Analysis for selected trajectory fragments. Our work should improve the understanding of dielectric and ferroelectric properties of hybrid organic-inorganic materials.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号