首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B(npy)Ar2 (npy=2‐(naphthalen‐1‐yl)pyridine) compounds bearing various nonbulky aryl groups undergo a clean and sequential two‐step photoisomerization in which two aryl substituents on boron migrate to a carbon atom of the naphthyl moiety. The second isomerization step is the first example of a reversible photoisoermization between a borepin and a borirane. Both steric and electronic factors have been found to have a great impact on this photoreactivity. Furthermore, the borirane isomer reacts with oxygen, forming a rare oxaborepin dimer.  相似文献   

2.
As the first discovered organoboron compound with photochromic property, B(ppy)Mes2 (ppy=2-phenylpyridine, Mes=mesityl) displays rich photochemistry that constitutes a solid foundation for wide applications in optoelectronic fields. In this work, we investigated the B(ppy)Mes2 to borirane isomerization mechanisms in the three lowest electronic states (S0, S1, and T1) based on the complete active space self-consistent field (CASSCF) and its second-order perturbation (CASPT2) methods combined with time-dependent density functional theory (TD-DFT) calculations. Our results show that the photoisomerization in the S1 state is dominant, which is initiated by the cleavage of the B-Cppy bond. After overcoming a barrier of 0.5 eV, the reaction pathway leads to a conical intersection between the S1 and S0 states (S1/S0)x, from which the decay path may go back to the reactant B(ppy)Mes2 via a closed-shell intermediate (Int1-S0) or to the product borirane via a biradical intermediate (Int2-S0). Although triplet states are probably involved in the photoinduced process, the possibility of the photoisomerization in T1 state is very small owing to the weakly allowed S1→T1 intersystem crossing and the high energy barrier (0.77 eV). In addition, we found the photoisomerization is thermally reversible, which is consistent with the experimental observations.  相似文献   

3.
N,C-chelate organoboron compounds are widely employed as photoresponsive and optoelectronic materials due to their efficient photochromic reactivity. It was found in experiments that two diphenyl-substituted organoboron compounds, namely B(ppy)Ph2 (ppy=2-phenylpyridyl) and B(iba)Ph2 (iba=N-isopropylbenzylideneamine), show distinct photochemical reactivity. B(ppy)Ph2 is inert on irradiation, whereas B(iba)Ph2 undergoes photoinduced transformations, yielding BN-cyclohepta-1,3,5-triene via a borirane intermediate. In this work, the complete active space self-consistent field and its second-order perturbation (CASPT2//CASSCF) methods were used to investigate the photoinduced reaction mechanisms of B(ppy)Ph2 and B(iba)Ph2. The calculations showed that the two compounds isomerize to borirane in the same way by passing a transition state in the S1 state and a conical intersection between the S1 and S0 states. The energy barriers in the S1 state of 0.54 and 0.26 eV for B(ppy)Ph2 and B(iba)Ph2, respectively, were explained by analyzing the charge distributions of minima in S0 and S1 states. The results provide helpful insights into the excited-state dynamics of organoboron compounds, which could assist in rational design of boron-based photoresponsive materials.  相似文献   

4.
Compared with green fluorescence protein (GFP) chromophores, the recently synthesized blue fluorescence protein (BFP) chromophore variant presents intriguing photochemical properties, for example, dual fluorescence emission, enhanced fluorescence quantum yield, and ultra‐slow excited‐state intramolecular proton transfer (ESIPT; J. Phys. Chem. Lett., 2014 , 5, 92); however, its photochemical mechanism is still elusive. Herein we have employed the CASSCF and CASPT2 methods to study the mechanistic photochemistry of a truncated BFP chromophore variant in the S0 and S1 states. Based on the optimized minima, conical intersections, and minimum‐energy paths (ESIPT, photoisomerization, and deactivation), we have found that the system has two competitive S1 relaxation pathways from the Franck–Condon point of the BFP chromophore variant. One is the ESIPT path to generate an S1 tautomer that exhibits a large Stokes shift in experiments. The generated S1 tautomer can further evolve toward the nearby S1/S0 conical intersection and then jumps down to the S0 state. The other is the photoisomerization path along the rotation of the central double bond. Along this path, the S1 system runs into an S1/S0 conical intersection region and eventually hops to the S0 state. The two energetically allowed S1 excited‐state deactivation pathways are responsible for the in‐part loss of fluorescence quantum yield. The considerable S1 ESIPT barrier and the sizable barriers that separate the S1 tautomers from the S1/S0 conical intersections make these two tautomers establish a kinetic equilibrium in the S1 state, which thus results in dual fluorescence emission.  相似文献   

5.
The structures of 2-(4-hydroxystyryl)quinoline 1 and 2-(2-hydroxystyryl)quinoline 2 have been optimized by the semiempirical methods PM3 and PM3-CI(8 × 8) with configuration interaction for the ground (S0) and the excited singlet (S1) states, respectively. The relative stability of the E- and Z-isomers, the quinoid tautomers, and the spiropyran form for compound 2 was calculated. It was found that hydroxyl-containing tautomers were more stable in the S0 state, and the quinoid tautomers are more stable in the S1 state. The calculations predict the possibility of photoisomerization and photoinduced proton transfer in hydroxystyrylquinolines.  相似文献   

6.
Examination of the photoreactivity of a new class of N,C-chelate organoboron compounds, including a series of unsymmetrically substituted boron molecules, B(naph-pyridyl)(Ar1)(Ar2) and B(naph-thiazolyl)(Ar1)(Ar2), led to the discovery of new and divergent photothermal isomerization phenomena. These include the clean and regioselective photoisomerization by unsymmetrical boron, forming borepin isomers, some of which further isomerize to the corresponding boratanorcaradiene diastereomer pairs as a result of the generation of two chiral centers. Significantly, the boratanorcaradienes involving a 3-thienyl substituent on boron were found to thermally convert to BN-fluoranthene annulated borapentalene via an unprecedented reversible boratacyclopropane–boratacyclopentene rearrangement. Changing the pyridyl donor to a thiazolyl donor on the boron was found to provide the B(naph-thiazolyl)(Mes)2 compounds with a distinct new photoisomerization pathway—instead of borepin, forming new blue fluorescent polycyclic azaborinine species. This work illustrates the richness and complexity of boron photochemistry.  相似文献   

7.
Natural UV photoprotection plays a vital role in physiological protection. It has been reported that UVC radiation can make resveratrol (RSV) and piceatannol (PIC) accumulate in grape skin. In this work, we demonstrated that RSV and PIC could significantly absorb UVA and UVB, and confirmed their satisfactory photostability. Furthermore, we clarified the UV photoprotection mechanism of typical stilbenoids of RSV and PIC for the first time by using combined femtosecond transient absorption (FTA) spectroscopy and time‐dependent density functional theory (TD‐DFT) calculations. RSV and PIC can be photoexcited to the excited state after UVA and UVB absorption. Subsequently, the photoisomerized RSV and PIC quickly relax to the ground state via nonadiabatic transition from the S1 state at a conical intersection (CI) position between potential energy surfaces (PESs) of S1 and S0 states. This ultrafast transcis photoisomerization will take place within a few tens of picoseconds. As a result, the UV energy absorbed by RSV and PIC could be dissipated by an ultrafast nonadiabatic photoisomerization process.  相似文献   

8.
The location of the carotenoid 2Ag-state (S1) was studied by fluorescence spectroscopy in two series of carotenoids. One consisted of natural polyenes like phytoene, phytofluene, β-carotene, and neurosporene, and the other of minicarotenes, i.e., compounds similar to β-carotene, but with a smaller number of double bonds (n=3–9). A decrease of the S1-S0 energy gap with n was observed in both series, and extrapolation to n= 11 gave the energies 14 500 and 13 200 cm?1 for β-carotene and lycopene, respectively. The neurosporene S1 state was located at ca 16 000 cm?1. A good relationship between the nonradiative relaxation rate and the number of conjugation was observed. The rate increased by a factor of 2.5 per double bond. The possible role of the S1 state in reversible carotenoid ← chlorophyll electron-exchange energy transfer is discussed.  相似文献   

9.
Acylhydrazones is a novel yet underexploited class of molecular switches. In the present paper, we investigated the excited‐state decay of three model systems of acylhydrazones in the gas phase by a combination of electronic structure calculations and Tully's surface hopping dynamic simulations. Our computational results demonstrated that the S2(nNπ*) state decay of the three model systems leads to both the imine‐like photo‐isomerization through the S1(nNπ*)/S0 intersection and population of the S1(nOπ*) state that will cross to the triplet manifold. The position of phenyl substituent was found to have an effect on the ratio of the two S1 states. The present theoretical work provides some understandings of the intramolecular mechanism for de‐population of the excited electronic states of acylhydrazones.  相似文献   

10.
Reactions of photoisomerization proceeding through a “funnel” are discussed (Fig. 1a, θ ? θ*, where θ is the angle of isomerization). Strong nonadiabatic interactions in the region of conical intersection of the multidimensional adiabatic potentials Us and Us0 are supposed to be responsible for the ultrafast nonradiative transition SK2 S0 (K2 ? 1010-1012 s?1). The K2 dependence on the solvent viscosity (isomerization of t-stilbene in series ethanol--octanol) and polarity (isomerization of cyanine dyes in polar solvents) was determined to be in a good agreement with experiments.  相似文献   

11.
The photoinduced isomerization of diaminomaleonitrile (DAMN) to diaminofumaronitrile (DAFN) was suggested to play a key role in the prebiotically plausible formation of purine nucleobases and nucleotides. In this work we analyze two competitive photoisomerization mechanisms on the basis of state‐of‐the‐art quantum‐chemical calculations. Even though it was suggested that this process might occur on the triplet potential‐energy surface, our results indicate that the singlet reaction channel should not be disregarded either. In fact, the peaked topography of the S1/S0 conical intersection suggests that the deexcitation should most likely occur on a sub‐picosecond timescale and the singlet photoisomerization mechanism might effectively compete even with a very efficient intersystem crossing. Such a scenario is further supported by the relatively small spin–orbit coupling of the S1 and T2 states in the Franck–Condon region, which does not indicate a very effective triplet bypass for this photoreaction. Therefore, we conclude that the triplet reaction channel in DAMN might not be as prominent as was previously thought.  相似文献   

12.
Boron compound BOMes2 containing an internal B−O bond undergoes highly efficient photoisomerization, followed by sequential structural transformations, resulting in a rare eight-membered B, O-heterocycle (S. Wang, et al. Org. Lett. 2019 , 21, 5285–5289). In this work, the detailed reaction mechanisms of such a unique carbonyl-supported tetracoordinate boron system in the first excited singlet (S1) state and the ground (S0) state were investigated by using the complete active space self-consistent field and its second-order perturbation (MS-CASPT2//CASSCF) method combined with time-dependent density functional theory (TD-DFT). Moreover, an imine-substituted tetracoordinated organic boron system (BNMes2) was selected for comparative study to explore the intrinsic reasons for the difference in reactivity between the two types of compounds. Steric factor was found to influence the photoisomerization activity of BNMes2 and BOMes2. These results rationalize the experimental observations and can provide helpful insights into understanding the excited-state dynamics of heteroatom-doped tetracoordinate organoboron compounds, which facilitates the rational design of boron-based materials with superior photoresponsive performances.  相似文献   

13.
Electronic structure calculations and nonadiabatic dynamics simulations (more than 2000 trajectories) are used to explore the ZE photoisomerization mechanism and excited‐state decay dynamics of two arylazopyrazole photoswitches. Two chiral S1/S0 conical intersections with associated enantiomeric S1 relaxation paths that are barrierless and efficient (timescale of ca. 50 fs) were found. For the parent arylazopyrazole (Z8) both paths contribute evenly to the S1 excited‐state decay, whereas for the dimethyl derivative (Z11) each of the two chiral cis minima decays almost exclusively through one specific enantiomeric S1 relaxation path. To our knowledge, the Z11 arylazopyrazole is thus the first example for nearly stereospecific unidirectional excited‐state relaxation.  相似文献   

14.
Next-generation quantum theory of atoms in molecules was applied to analyze, along an entire bond path, intramolecular interactions known to influence the photoisomerization dynamics of a light-driven rotary molecular motor. The 3D bond-path framework set B0,1 constructed from the least and most preferred directions of electronic motion, provided new insights into the bonding leading to different S1 state lifetimes including the first quantification of covalent character of a closed-shell intramolecular bond path. We undertook the first use of the stress tensor trajectory Tσ(s) analysis on selected nonadiabatic molecular dynamics trajectories with the electron densities obtained using the ensemble density functional theory method. The stress tensor Tσ(s) analysis was found to be well suited to follow the dynamics trajectories that included the S0 and S1 electronic states through the conical intersection and also provided to a new measure to assess the degree of purity of the axial bond rotation for the design of rotary molecular motors.  相似文献   

15.
艾玥洁  林玲  方维海 《化学学报》2007,65(2):129-134
运用精确的量子化学计算方法CASSCF, B3LYP和MP2, 结合cc-pVDZ基组, 优化了环丙酮的基态和激发态势能面上的驻点结构, 计算了它们的相对能量. 在此基础上, 深入探讨了环丙酮光解离反应的机理. 在292~365 nm波长的光的激发下, 环丙酮被激发至S1态, 最可能的初始过程是α C—C键断裂. 我们的理论研究发现, 在α C—C键断裂途径上, 存在基态和第一激发势能面的交叉点, 它在随后的反应过程中起着重要作用. 一方面可形成单态双自由基中间体, 然后发生另一个C—C键的断裂, 生成基态产物一氧化碳和乙烯. 另一方面, 经过S1/S0交叉点可以回到热的基态. 在这种情况下, 体系具有足够的能量, 克服基态途径上的势垒, 生成同样的基态产物乙烯和一氧化碳. 此外, 还对环丙酮基态异构化反应进行了理论研究.  相似文献   

16.
A new scheme of photo‐fluorescent emission origin, described as S0 (relaxed state)→Sn (Frank‐Condon state)→ Sm (relaxed state)→S0 (Frank‐Condon state), is presented to explain the multiple fluorescent emissions of squaraine dyes observed experimentally according to the configuration interaction singles calculations of relaxed excited states of a model compound, bis[4‐(N,N‐dimethylamino)phenyl]squaraine (SQ). It is exhibited that all triple fluorescent emissions of SQ have their significant origin in vertical electron transitions of different relaxed excited states. In addition, some important absorption peaks appearing in higher energy region are most likely to be responsible for the higher energy band observed in solid states of many squaraine dyes.  相似文献   

17.
The photoisomerization of thiophene (3–5 and 2–4 transpositions of carbon atoms) has been studied with ab initio SCF and CI calculations. A possible reaction mechanism from the lowest excited singlet state 1B2 of thiophene can be proposed from potential surface via Dewar thiophene. The 1B2 state of thiophene would easily convert to the biradical intermediate by almost one step. The internal conversion of this species to the S0 state would cause to the transposition of carbon atoms. The effect of phenyl substituent is also discussed.  相似文献   

18.
The photochemical reaction channels of cyclobutanone have been studied at the CASSCF level with a 6‐31G* basis set. Starting from the n‐π* excited‐state (S1) cyclobutanone, the three reactions can take place: decarbonylation (produce CO and cyclopropane or propylene), cycloelimination (produce ketene and ethylene), and ring expansion (produce oxacarbene). Our computation indicates that decarbonylation products CO and triplet trimethylene are formed on the triplet n‐π* excited state (T1) in a stepwise way via a biradical intermediate after intersystem crossing (ISC) to T1 from S1. And, then, the triplet trimethylene undergoes a second ISC to the ground state (S0) to produce the singlet trimethylene from which cyclopropane can be produced rapidly only overcoming a 1 to 2‐kcal/mol barrier while propylene can be formed as a secondary product. The cycloelimination products ketene and ethylene are formed on the S0 in a concerted mechanism after internal conversion (IC) to S0 from S1 via a biradical conical intersection. The reaction channels corresponding to ring expansion on the S0, T1, and S1 states have also been discussed, and the likeliest reaction path is that oxacarbene is formed on the ground state following S1/S0 internal conversion. The surface topology of cyclobutanone on the S1 surface is characterized by a transition state separating the minimum from the S1/S0 conical intersection, which is consistent with the previous computations and can explain the wavelength dependence of the fluorescence emission yield. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

19.
Potential energy surface (PES) for 1‐styrylnaphthalene was calculated by PM3 method for the S0 state and PM3‐CI(2x2) method with configuration interaction for the S1 state. Scanning PES along both isomerization and cyclization reaction coordinates enabled to reveal the minimum energy path (MEP) with low barriers on the S1 PES from E‐isomer to dihydrocyclophotoproduct (DHP). This is consistent with formation of the photocyclization product in one‐photon process during irradiation of E‐isomer. Additionally, the MEP was found to bypass the coordinate region of Z‐isomer, i.e. one‐photon E‐isomer‐to‐DHP photocyclization does not demand participation of the excited Z‐isomer. Therefore, adiabatic trans‐to‐cis isomerization is likely not an intermediate stage on the E‐isomer photocyclization pathway, and experimentally observed one‐photon formation of the DHP from the E‐isomer is likely not an evidence for adiabatic trans‐to‐cis photoisomerization, as it is usually assumed. According to the results obtained, two photochemical reactions of E‐isomer, photoisomerization to Z‐isomer and photocyclization to DHP, are not consecutive but parallel reactions with branching at perpendicular conformer on the S1 PES. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
The conformational preferences for 2,3-O-isopropylidene-α- -sorbopyranose derivatives 3–6 were determined by using 1H NMR data and empirical force field calculations. Proton NMR studies of 3–6 indicate that a twist-boat (or skew) conformation (3S0) prevails over possible chair forms for each compound. Force-field calculations (MM2, MNDO, AM1) on a model 2,3-O-isopropylidene-α- -sorbopyranose system (18) indicate that the 3S0 conformation is among the low-energy structures. X-Ray crystallographic analysis of α- -sorbopyranose sulfamate 3, a compound with potent anticonvulsant activity, demonstrates that the 3S0 skew conformation is manifested in the solid state, as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号