首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two polymorphs of the spin crossover (SCO) compound [Fe(1,3‐bpp)2](ClO4)2 ( 1 and 2 ; 1,3‐bpp=2‐(pyrazol‐1‐yl)‐6‐(pyrazol‐3‐yl)pyridine) were prepared using a novel, stepwise procedure. Crystals of 1 deposit from dry solvents, while 2 is obtained from a solid‐state procedure, by sequentially removing lattice H2O molecules from the solvatomorph [Fe(1,3‐bpp)2](ClO4)2?2 H2O ( 2 ?2 H2O), using single‐crystal‐to‐single‐crystal (SCSC) transformations. Hydrate 2 ?2 H2O is obtained through the same reaction as 1 , now with 2.5 % of water added. Compounds 2 and 2 ?2 H2O are unstable in the atmosphere and absorb or lose one equivalent of water, respectively, to both yield the stable solvatomorph [Fe(1,3‐bpp)2](ClO4)2?H2O ( 2 ?H2O), also following SCSC processes. The four derivatives have been characterised by single‐crystal X‐ray diffraction (SCXRD). Furthermore, the homogeneity of the various compounds as well as their SCSC interconversions have been confirmed by powder X‐ray diffraction (PXRD). Polymorphs 1 and 2 exhibit abrupt SCO behaviour near room temperature with T1/2↑=279/316 K and T1/2↓=276/314 K (near 40 K of shift) and different cooperativity.  相似文献   

2.
The highly stable nitrosyl iron(II) mononuclear complex [Fe(bztpen)(NO)](PF6)2 (bztpen=N‐benzyl‐N,N′,N′‐tris(2‐pyridylmethyl)ethylenediamine) displays an S=1/2?S=3/2 spin crossover (SCO) behavior (T1/2=370 K, ΔH=12.48 kJ mol?1, ΔS=33 J K?1 mol?1) stemming from strong magnetic coupling between the NO radical (S=1/2) and thermally interconverted (S=0?S=2) ferrous spin states. The crystal structure of this robust complex has been investigated in the temperature range 120–420 K affording a detailed picture of how the electronic distribution of the t2g–eg orbitals modulates the structure of the {FeNO}7 bond, providing valuable magneto–structural and spectroscopic correlations and DFT analysis.  相似文献   

3.
Reaction of 1,2-di(tetrazol-2-yl)ethane (ebtz) with Fe(BF4)2⋅6 H2O in different nitriles yields one-dimensional coordination polymers [Fe(ebtz)2(RCN)2](BF4)2nRCN (n=2 for R=CH3 ( 1 ) and n=0 for R=C2H5 ( 2 ) C3H7 ( 3 ), C3H5 ( 4 ), CH2Cl ( 5 )) exhibiting spin crossover (SCO). SCO in 1 and 3 – 5 is complete and occurs above 160 K. In 2 , it is shifted to lower temperatures and is accompanied by wide hysteresis (T1/2=78 K, T1/2=123 K) and proceeds extremely slowly. Isothermal (80 K) time-resolved single-crystal X-ray diffraction studies revealed a complex nature for the HS→LS transition in 2 . An initial, slow stage is associated with shrinkage of polymeric chains and with reduction of volume at 77 % (in relation to the difference between cell volumes VHS−VLS) whereas only 16 % of iron(II) ions change spin state. In the second stage, an abrupt SCO occurs, associated with breathing of the crystal lattice along the direction of the Fe–nitrile bonds, while the nitriles reorient. HS→LS switching triggered by light (808 nm) reveals the coupling of spin state and nitrile orientation. The importance of this coupling was confirmed by studies of [Fe(ebtz)2(C2H5CN/C3H7CN)2](BF4)2 mixed crystals ( 2 a , 2 b ), showing a shift of T1/2 to higher values and narrowing of the hysteresis loop concomitant with an increase of the fraction of butyronitrile. This increase reduces the capability of nitrile molecules to reorient. Density functional theory (DFT) studies of models of 1 – 5 suggest a particular possibility of 2 to adopt a low (140–145°) value of its Fe-N-C(propionitrile) angle.  相似文献   

4.
The influence of ligands on the spin state of a metal ion is of central importance for bioinorganic chemistry, and the production of base‐metal catalysts for synthesis applications. Complexes derived from [Fe(bpp)2]2+ (bpp=2,6‐di{pyrazol‐1‐yl}pyridine) can be high‐spin, low‐spin, or spin‐crossover (SCO) active depending on the ligand substituents. Plots of the SCO midpoint temperature (T ) in solution vs. the relevant Hammett parameter show that the low‐spin state of the complex is stabilized by electron‐withdrawing pyridyl (“X”) substituents, but also by electron‐donating pyrazolyl (“Y”) substituents. Moreover, when a subset of complexes with halogeno X or Y substituents is considered, the two sets of compounds instead show identical trends of a small reduction in T for increasing substituent electronegativity. DFT calculations reproduce these disparate trends, which arise from competing influences of pyridyl and pyrazolyl ligand substituents on Fe‐L σ and π bonding.  相似文献   

5.
Crystalline [Fe(bppSMe)2][BF4]2 ( 1 ; bppSMe=4‐(methylsulfanyl)‐2,6‐di(pyrazol‐1‐yl)pyridine) undergoes an abrupt spin‐crossover (SCO) event at 265±5 K. The crystals also undergo a separate phase transition near 205 K, involving a contraction of the unit‐cell a axis to one‐third of its original value (high‐temperature phase 1; Pbcn, Z=12; low‐temperature phase 2; Pbcn, Z=4). The SCO‐active phase 1 contains two unique molecular environments, one of which appears to undergo SCO more gradually than the other. In contrast, powder samples of 1 retain phase 1 between 140–300 K, although their SCO behaviour is essentially identical to the single crystals. The compounds [Fe(bppBr)2][BF4]2 ( 2 ; bppBr=4‐bromo‐2,6‐di(pyrazol‐1‐yl)pyridine) and [Fe(bppI)2][BF4]2 ( 3 ; bppI=4‐iodo‐2,6‐di(pyrazol‐1‐yl)‐pyridine) exhibit more gradual SCO near room temperature, and adopt phase 2 in both spin states. Comparison of 1 – 3 reveals that the more cooperative spin transition in 1 , and its separate crystallographic phase transition, can both be attributed to an intermolecular steric interaction involving the methylsulfanyl substituents. All three compounds exhibit the light‐induced excited‐spin‐state trapping (LIESST) effect with T(LIESST=70–80 K), but show complicated LIESST relaxation kinetics involving both weakly cooperative (exponential) and strongly cooperative (sigmoidal) components.  相似文献   

6.
Two new isostructural iron(II) spin‐crossover (SCO) framework (SCOF) materials of the type [Fe(dpms)2(NCX)2] (dpms=4,4′‐dipyridylmethyl sulfide; X=S ( SCOF‐6(S) ), X=Se ( SCOF‐6(Se) )) have been synthesized. The 2D framework materials consist of undulating and interpenetrated rhomboid (4,4) nets. SCOF‐6(S) displays an incomplete SCO transition with only approximately 30 % conversion of high‐spin (HS) to low‐spin iron(II) sites over the temperature range 300–4 K (T1/2=75 K). In contrast, the NCSe? analogue, SCOF‐6(Se) , displays a complete SCO transition (T1/2=135 K). Photomagnetic characterizations reveal quantitative light‐ induced excited spin‐state trapping (LIESST) of metastable HS iron(II) sites at 10 K. The temperature at which the photoinduced stored information is erased is 58 and 50 K for SCOF‐6(S) and SCOF‐6(Se) , respectively. Variable‐pressure magnetic measurements were performed on SCOF‐6(S) , revealing that with increasing pressure both the T1/2 value and the extent of spin conversion are increased; with pressures exceeding 5.2 kbar a complete thermal transition is achieved. This study confirms that kinetic trapping effects are responsible for hindering a complete thermally induced spin transition in SCOF‐6(S) at ambient pressure due to an interplay between close T1/2 and T(LIESST) values.  相似文献   

7.
Molecule-based magnetic materials are promising candidates for molecular spin qubits, which utilize spin relaxation behavior. Various kinds of transition metal complexes with S=1/2 have been reported to act as spin qubits with long spin-spin relaxation times (T2). However, the spin qubit properties of low-spin Ni(III) complexes are not as well known since Ni(III) compounds are often unstable. We report here the slow magnetic relaxation behavior and T2 values for three kinds of low-spin Ni(III) based complexes with S=1/2 under magnetically diluted conditions. [Ni(cyclam)X2]Y (cyclam=1,4,8,11-tetraazacyclotetradecane) with octahedral structures and [Ni(mnt)2] (mnt=maleonitriledithiolate) with a square-planar structure underwent slow magnetic relaxations in the presence of a dc magnetic bias field. From electron spin resonance (ESR) spectroscopy, the Ni(III) complexes exhibited observable T2, indicating that Ni(III) complexes are promising candidates for use as molecule-based spin qubits.  相似文献   

8.
A thermochromic 1D spin crossover coordination (SCO) polymer [Fe(βAlatrz)3](BF4)2 ? 2 H2O ( 1? 2 H2O), whose precursor βAlatrz, (1,2,4‐triazol‐4‐yl‐propionate) has been tailored from a β‐amino acid ester is investigated in detail by a set of superconducting quantum interference device (SQUID), 57Fe Mössbauer, differential scanning calorimetry, infrared, and Raman measurements. An hysteretic abrupt two‐step spin crossover (T1/2=230 K and T1/2=235 K, and T1/2=172 K and T1/2=188 K, respectively) is registered for the first time for a 1,2,4‐triazole‐based FeII 1D coordination polymer. The two‐step SCO configuration is observed in a 1:2 ratio of low‐spin/high‐spin in the intermediate phase for a 1D chain. The origin of the stepwise transition was attributed to a distribution of chains of different lengths in 1? 2 H2O after First Order Reversal Curves (FORC) analyses. A detailed DFT analysis allowed us to propose the normal mode assignment of the Raman peaks in the low‐spin and high‐spin states of 1? 2 H2O. Vibrational spectra of 1? 2 H2O reveal that the BF4? anions and water molecules play no significant role on the vibrational properties of the [Fe(βAlatrz)3]2+ polymeric chains, although non‐coordinated water molecules have a dramatic influence on the emergence of a step in the spin transition curve. The dehydrated material [Fe(βAlatrz)3](BF4)2 ( 1 ) reveals indeed a significantly different magnetic behavior with a one‐step SCO which was also investigated.  相似文献   

9.
We present here the syntheses, crystal structures, and spin crossover (SCO) properties of a series of halogen-functionalized cobalt(II) complexes, [Co(Brphtpy)2](OTf)2 ⋅ DMF ⋅ 2H2O ( 1 ), [Co(Brphtpy)2](HBS)2 ⋅ H2O ( 2 ), [Co(Brphtpy)2](MQ)2 ⋅ 2MeCN ⋅ 3H2O ( 3 ) ( Brphtpy =4′–(4-Bromophenyl)–2,2′:6′,2′′-terpyridine; OTf=trifluoromethanesulfonate; HBS=hydroxybenzenesulfonate dihydrate; MQ=methyl orange). Variable-temperature single-crystal X-ray analyses revealed mononuclear compounds of 1 – 3 consisted of [Co(Brphtpy)2]2+ SCO active units and organosulfonate anions and no structural phase transformation happened in measured high-low temperature. The packing structures of these complexes were tuned by varying organosulfonates. However, no notable supramolecular interactions can be found, in turn leading to gradual, incomplete, and non-hysteretic SCO behaviors. Interestingly, the SCO behaviors of these three complexes were significantly modified after the removal of lattice solvents. Combined structural and magnetic investigations revealed the non-cooperative supramolecular packing structures, guest internal pressure, and the small structural distortions of the SCO units should be responsible for the worse SCO properties of 1 – 3 . The foregoing results show that to achieve high-performance Co2+ SCO, both the weak interactions, internal pressure, and structural distortion should be considered during the design and construction of SCO complexes.  相似文献   

10.
Foremost, practical applications of spin-crossover (SCO) materials require control of the nature of the spin-state coupling. In existing SCO materials, there is a single, well-defined dimensionality relevant to the switching behavior. A new material, consisting of 1,2,4-triazole-based trimers coordinated into 1D chains by [Au(CN)2] and spaced by anions and exchangeable guests, underwent SCO defined by elastic coupling across multiple dimensional hierarchies. Detailed structural, vibrational, and theoretical studies conclusively confirmed that intra-trimer coupling was an order of magnitude greater than the intramolecular coupling, which was an order of magnitude greater than intermolecular coupling. As such, a clear hierarchy on the nature of elastic coupling in SCO materials was ascertained for the first time, which is a necessary step for the technological development of molecular switching materials.  相似文献   

11.
DFT methods were utilized to study SCO complexes. [Fe(2btz)2(NCX)2] (2btz = 2,2′‐bithiazoline, X = S ( 1 ) and Se ( 2 )), [Fe(phen)2(NCX)2] (phen = 1,10‐phenantroline, X = S ( 3 ) and Se ( 4 )), and [Fe(bpy)2(NCS)2] ( 5 ) (bpy = 2,2′‐bipyridine) compounds, which have experimentally shown SCO behavior, were calculated. B3LYP, B3LYP*, OPBE, and OLYP with 6‐31G* and 6‐311 + G** basis sets were employed to calculate the ΔEHS/LS energy gap as a clue to find complexes with SCO behavior. It is found that calculated result by B3LYP* with c3 = 0.14 and OPBE methods and 6‐31G* basis set are in agreement with experimentally observed SCO complexes. Then, newly designed Fe(N‐N)2(X)2 complexes, where N‐N are bidentate nitrogen donor chelating ligands and X= SCN, SeCN, Cl, Br, I, were chosen to see their potential to be SCO compounds. ΔEHS/LS for potential SCO complexes are estimated from 0.8 to 6.5 kcal/mol in B3LYP* and 0.6–5.7 kcal/mol in OPBE. These calculations suggest [Fe(bpy)2(NCSe)2], [Fe(5dmbpy)2(NCS)2], and [Fe(3‐BrPhen)2(NCSe)2] compounds have the ability to show SCO behavior. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
The synthesis and physico‐chemical characterization of an FeII complex [Fe( L1 )3](ClO4)2?CH3CN?0.5H2O, 1 , incorporating a bidentate imidazolylimine‐based ligand are reported. Complex 1 crystallises as the mer‐isomer and the crystal lattice is replete with hydrogen bonding interactions between ClO4? anions, solvent molecules and imidazole N‐H groups. Variable‐temperature structural, magnetic, photomagnetic and optical reflectivity techniques have been deployed to fully characterise the spin‐crossover (SCO) behaviour in 1 along with its desolvated phase, 1?desolv . Variable‐temperature (1.8–300 K) magnetic‐susceptibility measurements reveal a broad two‐step full SCO for 1 (T1/2=158 and 184 K) and photomagnetic experiments at 10 K under white‐light irradiation revealed complete photo‐induced SCO. 1?desolv displays considerably different magnetic behaviour with sharp single‐step SCO accompanied by a thermal hysteresis (T1/2↑=105 K, T1/2↓=95 K) in addition to full photo‐induced SCO at lower temperatures.  相似文献   

13.
4-(tert-Butylsulfanyl)-2,6-di(pyrazol-1-yl)pyridine (L) was obtained in low yield from a one-pot reaction of 2,4,6-trifluoropyridine with 2-methylpropane-2-thiolate and sodium pyrazolate in a 1:1:2 ratio. The materials [FeL2][BF4]2⋅solv ( 1[BF4]2 ⋅solv) and [FeL2][ClO4]2⋅solv ( 1[ClO4]2 ⋅solv; solv=MeNO2, MeCN or Me2CO) exhibit a variety of structures and spin-state behaviors including thermal spin-crossover (SCO). Solvent loss on heating 1[BF4]2x MeNO2 (x≈2.3) occurs in two steps. The intermediate phase exhibits hysteretic SCO around 250 K, involving a “reverse-SCO” step in its warming cycle at a scan rate of 5 K min−1. The reverse-SCO is not observed in a slower 1 K min−1 measurement, however, confirming its kinetic nature. The final product [FeL2][BF4]2⋅0.75 MeNO2 was crystallographically characterized, and shows abrupt but incomplete SCO at 172 K which correlates with disorder of an L ligand. The asymmetric unit of 1[BF4]2y Me2CO (y≈1.6) contains five unique complex molecules, four of which undergo gradual SCO in at least two discrete steps. Low-spin 1[ClO4]2 ⋅0.5 Me2CO is not isostructural with its BF4 congener, and undergoes single-crystal-to-single-crystal solvent loss with a tripling of the crystallographic unit cell volume, while retaining the P space group. Three other solvate salts undergo gradual thermal SCO. Two of these are isomorphous at room temperature, but transform to different low-temperature phases when the materials are fully low-spin.  相似文献   

14.
The preparation of 5‐(1‐methylhydrazinyl)‐1H‐tetrazole monohydrate ( 1 ?H2O) and various copper(II) complexes with perchlorate ( 2 and 3 ), nitrate ( 4 , 5 , and 6 ), dinitramide ( 7 ), and chloride ( 8 ) is described. The coordination compounds (monomers, dimers, and polymers) were characterized through infrared spectroscopy and elemental analysis. Further, the structures of 2 and 4 – 8 were determined by single‐crystal X‐ray diffraction. Compound 1 can act as a bidentate ligand in its neutral form (HMHT) and as a μ2‐ or μ3‐bridging ligand in its deprotonated form (MHT). The energetic properties of the synthesized complexes, such as their sensitivities toward impact and friction, were determined, and laser ignition tests were performed. New information about the laser initiation process and the role of the anion in the initiation criterion was obtained. The perchlorate complexes 2 (Tdecomp=217 °C) and 3 (Tdecomp=206 °C) are potential primary explosives.  相似文献   

15.
Four new heterotrinuclear complexes have been synthesized and characterized, namely {[Ni(L)2]2[Cu(opba)]}(ClO4)2, where opba denotes o-phenylenebis(oxamato) and L stands for 1,10-phenanthroline(phen) (1), 5-nitro-l,10-phenanthroline(NO2-phen) (2), 2,2′-bipyridyl(bpy) (S) and 4,4′-dimethyl-2,2′-bipyridyl(Me2bpy) (4). The temperature dependence of the magnetic susceptibility of {[Ni(phen)2]2[Cu(opba)]}(ClO4)23H2O has been studied in the 4–300 K range, giving the exchange integral J—109 cm?1. The HMT vs. T plot exhibits a minimum at about 100 K, characteristic of this kind of coupled polymetallic complex with an irregular spin-state structure.  相似文献   

16.
Four dinuclear LnIII? CuII complexes with Ln=Tb ( 1 ), Dy ( 2 ), Ho ( 3 ), and Er ( 4 ) were synthesized to investigate the relationship between their respective magnetic anisotropies and ligand‐field geometries. These complexes were crystallographically isostructural, and a uni‐axial ligand field was achieved by using three phenoxo oxygen groups. Complexes 1 and 2 displayed typical single‐molecule magnet (SMM) behaviors, of which the out‐of‐phase susceptibilities were observed in the temperature range of 1.8–5.0 K ( 1 ) and 1.8–20.0 K ( 2 ). The Cole–Cole plots exhibited a semicircular shape with α parameters in the range of 0.08–0.18 (2.6–4.0 K) and 0.07–0.24 (3.5–7.0 K). The energy barriers Δ/kB were estimated from the Arrhenius plots to be 32.9(4) K for 1 and 26.0(5) K for 2 . Complex 3 displayed a slow magnetic relaxation below 3.0 K, whereas complex 4 did not show any frequency‐dependent behavior for both in‐phase and out‐of‐phase susceptibilities, which indicates that easy‐axis anisotropy was absent. The temperature dependence of the dc susceptibilities for the field‐aligned samples of 1 – 3 revealed that the χMT value continuously increased as the temperature was lowered, which indicates the presence of low‐lying Stark sublevels with the highest |Jz| values. In contrast, complex 4 displayed a smaller and temperature‐independent χMT value, which also indicates that easy‐axis anisotropy was absent. Simultaneous analyses were carried out for 1 – 3 to determine the magnetic anisotropy parameters on the basis of the Hamiltonian that considers B20, B40, and B60.  相似文献   

17.
Three iron(II) complexes, [Fe(TPMA)(BIM)](ClO4)2?0.5H2O ( 1 ), [Fe(TPMA)(XBIM)](ClO4)2 ( 2 ), and [Fe(TPMA)(XBBIM)](ClO4)2 ?0.75CH3OH ( 3 ), were prepared by reactions of FeII perchlorate and the corresponding ligands (TPMA=tris(2‐pyridylmethyl)amine, BIM=2,2′‐biimidazole, XBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐biimidazole, XBBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐bibenzimidazole). The compounds were investigated by a combination of X‐ray crystallography, magnetic and photomagnetic measurements, and Mössbauer and optical absorption spectroscopy. Complex 1 exhibits a gradual spin crossover (SCO) with T1/2=190 K, whereas 2 exhibits an abrupt SCO with approximately 7 K thermal hysteresis (T1/2=196 K on cooling and 203 K on heating). Complex 3 is in the high‐spin state in the 2–300 K range. The difference in the magnetic behavior was traced to differences between the inter‐ and intramolecular interactions in 1 and 2 . The crystal packing of 2 features a hierarchy of intermolecular interactions that result in increased cooperativity and abruptness of the spin transition. In 3 , steric repulsion between H atoms of one of the pyridyl substituents of TPMA and one of the benzene rings of XBBIM results in a strong distortion of the FeII coordination environment, which stabilizes the high‐spin state of the complex. Both 1 and 2 exhibit a photoinduced low‐spin to high‐spin transition (LIESST effect) at 5 K. The difference in the character of intermolecular interactions of 1 and 2 also manifests in the kinetics of the decay of the photoinduced high‐spin state. For 1 , the decay rate constant follows the single‐exponential law, whereas for 2 it is a stretched exponential, reflecting the hierarchical nature of intermolecular contacts. The structural parameters of the photoinduced high‐spin state at 50 K are similar to those determined for the high‐spin state at 295 K. This study shows that N‐alkylation of BIM has a negligible effect on the ligand field strength. Therefore, the combination of TPMA and BIM offers a promising ligand platform for the design of functionalized SCO complexes.  相似文献   

18.
Iron(III) spin-crossover compounds, [Fe(qnal)2]CF3SO3·MeOH (1·MeOH) and [Fe(qnal)2]CF3SO3·acetone (1·acetone) were prepared and their spin transition properties were characterized by magnetic susceptibility measurement, Mössbauer spectroscopy and single crystal analysis. Two iron(III) compounds exhibited abrupt spin transition with thermal hysteresis loop (T 1/2?? = 115 K and T 1/2?? = 104 K for 1·MeOH, and T 1/2?? = 133 K and T 1/2?? = 130 K for 1·acetone). Single crystal analysis revealed both of the structures in high-spin (HS) and low-spin (LS) states for 1·acetone. The difference of bond length between the HS and LS states for 1·acetone was ~0.10 Å, which was corresponding to that of typical iron(III) SCO compounds. Specially, it showed strong intermolecular interactions by ???C?? stacking formed between the neighbor complexes leading to 2-D sheet. Both 1·MeOH and 1·acetone exhibited LIESST effect when it was illuminated at 1000 nm. We also confirmed that the introduction of strong intermolecular interactions, such as ???C?? stacking, can play an important role in LIESST effect.  相似文献   

19.
A formula relating the1A1?5T2 spin transition temperature (Tc) in Fe(II) complexes to characteristics of the compounds is derived. With certain assumptions, Tc is determined by the splitting parameter ΔLS of eg- and t2g-orbitals for the low-spin complexes and by the frequency ratio of normal vibrations of the low- and high-spin phases. For the group of compounds possessing spin transitions, the values of ΔLS are found and analyzed. Correlations between Tc and ΔLS are established; the values of the change in the probability of the Mössbauer effect are correlated with those of entropy of spin transition. The correlations are substantiated. It is concluded that for mononuclear Fe(II) complexes possessing sharp spin transitions, Tc may not be significantly higher than for Fe(Phy)2(BF4)2 (Tc=282 K).  相似文献   

20.
A mononuclear FeII complex, prepared with a Brønsted diacid ligand, H2L (H2L=2‐[5‐phenyl‐1H‐pyrazole‐3‐yl] 6‐benzimidazole pyridine), shows switchable physical properties and was isolated in five different electronic states. The spin crossover (SCO) complex, [FeII(H2L)2](BF4)2 ( 1A ), exhibits abrupt spin transition at T1/2=258 K, and treatment with base yields a deprotonated analogue [FeII(HL)2] ( 1B ), which shows gradual SCO above 350 K. A range of FeIII analogues were also characterized. [FeIII(HL)(H2L)](BF4)Cl ( 1C ) has an S=5/2 spin state, while the deprotonated complexes [FeIII(L)(HL)], ( 1D ), and (TEA)[FeIII(L)2], ( 1E ) exist in the low‐spin S=1/2 state. The electronic properties of the five complexes were fully characterized and we demonstrate in situ switching between multiple states in both solution and the solid‐state. The versatility of this simple mononuclear system illustrates how proton donor/acceptor ligands can vastly increase the range of accessible states in switchable molecular devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号