首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Three novel lanthanide complexes with the ligand 4,4-difluoro-1-(1,5-dimethyl-1H-pyrazol-4-yl)butane-1,3-dione (HL), namely [LnL3(H2O)2], Ln = Eu, Gd and Tb, were synthesized, and, according to single-crystal X-ray diffraction, are isostructural. The photoluminescent properties of these compounds, as well as of three series of mixed metal complexes [EuxTb1-xL3(H2O)2] (EuxTb1-xL3), [EuxGd1-xL3(H2O)2] (EuxGd1-xL3), and [GdxTb1-xL3(H2O)2] (GdxTb1-xL3), were studied. The EuxTb1-xL3 complexes exhibit the simultaneous emission of both Eu3+ and Tb3+ ions, and the luminescence color rapidly changes from green to red upon introducing even a small fraction of Eu3+. A detailed analysis of the luminescence decay made it possible to determine the observed radiative lifetimes of Tb3+ and Eu3+ and estimate the rate of excitation energy transfer between these ions. For this task, a simple approximation function was proposed. The values of the energy transfer rates determined independently from the luminescence decays of terbium(III) and europium(III) ions show a good correlation.  相似文献   

2.
ANTENNA EFFECT IN LUMINESCENT LANTHANIDE CRYPTATES: A PHOTOPHYSICAL STUDY   总被引:1,自引:0,他引:1  
Excited state emission and absorption decay measurements have been made on the cage-type cryptate complexes [M bpy.bpy.bpy]n+, where Mn+= Na+, La3+, Eu3+, Gd3+ or Tb3+ and [bpy.bpy.bpy] is a tris-bipyridine macrobicyclic cryptand. Excitation has been performed in the high intensity 1π-π* cryptand band with maximum at about 300 nm. Experiments have been carried out in H2O or D2O solutions and at 300 and 77 K to evaluate the rate constants of radiative and nonradiative decay processes. For Mn+= Na+, La3+ and Gd3+ the lowest excited state of the cryptate is a 3ππ* level of the cryptand which decays in the microsecond time scale at room temperature in H2O solution and in the second-millisecond time scale at 77 K in MeOH-EtOH. For Mn+= Eu3+, the lowest excited state is the luminescent 5D0 Eu3+ level which in H2O solution is populated with 10% efficiency and decays to the ground state with rate constants 2.9 × 103 s_1 at room temperature and 1.2 × 103 s?′ at 77 K. The relatively low efficiency of 5D0 population upon 1ππ* excitation is attributed to the presence of a ligand-to-metal charge transfer level through which 1ππ* decays directly to the ground state. For Mn+= Tb3+ the lowest excited state is the luminescent 5D4 Tb3+ level. The process of 5D4 population upon 1ππ* excitation is ?100% efficient, but at room temperature it is followed by a high-efficiency, activated back energy transfer from the 5D4 Tb3+ level to the 3ππ* ligand level because of the relatively small energy gap between the two levels (1200 cm_1) and the intrinsically long lifetime of 5D4. At 77 K back energy transfer cannot take place and the 5D4 Tb3* level deactivates to the ground state with rate constant 5.9 × 102 s-′ (H2O solution). The relevance of these results toward the optimization of Eu3+ and Tb3+ cryptates as luminescent probes is discussed.  相似文献   

3.
The optical properties of two-dimensional lanthanide dicarboxylates EuBDC or Eu2(H2O)2(O2C-C6H4-CO2)3 and EuCDC (denoted also MIL94) or Eu2(H2O)4(O2C-C6H10-CO2)3.2H2O are reported. The structures are built up from dimers of corner-sharing polyhedra and 1,3-benzenedicarboxylate (BDC) for EuBDC and from dimers of edge-sharing polyhedra and 1,3-benzenedicarboxylate (CDC) for EuCDC. The high Eu3+ concentration and the weak luminescence quenching allow the study of Eu3+ interactions. Anti-Stokes spectra from 5D1 are observed with excitation in 5D0. These results are very unusual for Eu3+ ions and reflect strong interactions between ions within a dimer. Excitation spectrum of the Eu3+ luminescence strongly differs in both compounds in the UV range. In case of EuBDC, an efficient sensitization of the luminescence due to the ligand is observed between 250 and 350 nm while only 4f-4f transitions are recorded on the Eu3+ excitation spectrum in EuCDC. The efficiency of the sensitization of the rare earth by the host is discussed by taking into account the geometrical arrangement and the electronic delocalization of the ligands.  相似文献   

4.
Physicochemical properties of new isostructural homo- and heteronuclear coordination polymers of terbium and europium with 1,4-bis-(4-methoxycarbonyl-3-hydroxyphenoxycarbonyl)butane (H2L) differing in the composition have been studied. The Tb2L3·H2O compound has exhibited efficient sensibilized green luminescence, whereas the corresponding europium-containing polymer EuL3·H2O has shown practically no luminescence due to mismatch of energies of the ligand triplet level and the Eu3+ ion emitting level. Heteronuclear terbium-europium polymers (Tb1.5Eu0.5L3·H2O, TbEuL3·H2O, and Tb0.5Eu1.5L3·H2O) show luminescence via the intramolecular transfer of the exiting energy from Tb3+ emitting level to Eu3+.  相似文献   

5.
Herein we report the synthesis of propanoic acid functionalized ionic liquids (ILs) with various lengths of alkyl chain on the imidazole ring. The synthesized propanoic acid functionalized ILs were used to dissolve Eu2O3 (or Tb4O7) due to the formation of europium(III) (or terbium(III)) carboxylate, aimed to get soft luminescent materials combining the properties of ILs and attractive luminescent properties of lanthanide ions. The luminescent behavior of Eu3+ and Tb3+ in the ILs were investigated by luminescence spectroscopy. The affect of the alkyl chain on the luminescent behavior (the asymmetry parameter (R), the lifetime of 5D0, and the 5D0 quantum efficiency) of Eu3+ has been discussed.  相似文献   

6.
Luminescence of Na9LnW10O36 · 18H2O (Ln = Sm, Tb, Dy) and K9EuW10O36 · 18H2O is reported. Low efficiency of the Tb3+ compound is ascribed to non-radiative loss via a charge-transfer (Tb4+-W5+) state. The Sm3+ and Dy3+ compounds have only medium luminescence efficiency due to cross relaxation between lanthanide ions. The Eu3+ compound demonstrates again the sensitivity of Eu3+ luminescence to small changes.  相似文献   

7.
A lanthanide‐complex‐based ratiometric luminescence probe specific for peroxynitrite (ONOO?), 4′‐(2,4‐dimethoxyphenyl)‐2,2′:6′,2′′‐terpyridine‐6,6′′‐diyl]bis(methylenenitrilo)tetrakis(acetate)‐Eu3+/Tb3+ ([Eu3+/Tb3+(DTTA)]), has been designed and synthesized. Both [Eu3+(DTTA)] and [Tb3+(DTTA)] are highly water soluble with large stability constants at ≈1020, and strongly luminescent with luminescence quantum yields of 10.0 and 9.9 %, respectively, and long luminescence lifetimes of 1.38 and 0.26 ms, respectively. It was found that the luminescence of [Tb3+(DTTA)] could be quenched by ONOO? rapidly and specifically in aqueous buffers, while that of [Eu3+(DTTA)] did not respond to the addition of ONOO?. Thus, by simply mixing [Eu3+(DTTA)] and [Tb3+(DTTA)] in an aqueous buffer, a ratiometric luminescence probe specific for time‐gated luminescence detection of ONOO? was obtained. The performance of [Tb3+(DTTA)] and [Eu3+/Tb3+(DTTA)] as the probes for luminescence imaging detection of ONOO? in living cells was investigated. The results demonstrated the efficacy and advantages of the new ratiometric luminescence probe for highly sensitive luminescence bioimaging application.  相似文献   

8.
Two macrobicyclic ligands derived from an 18‐membered tetralactam ring and 2,2′‐bipyridine or 2,6‐bis(pyrazol‐1‐yl)pyridine moieties, 1 and 2 , respectively, form stable complexes with GdIII, EuIII, and TbIII ions in aqueous solution. The ligand‐based luminescence is retained in the GdIII cryptates, whereas this radiative deactivation is quenched in the EuIII and TbIII cryptates by ligand‐to‐metal energy transfer, resulting in the usual metal‐centered emission spectra. Singlet‐ and triplet‐state energies, emission‐decay lifetimes, and luminescence yields were measured. [Tb⊂ 1 ]3+ cryptate shows a long luminescence lifetime (τ=1.12 ms) and a very high metal luminescence quantum yield (Φ=0.25) in comparison with those reported in the literature for Tb3+ complexes sensitized by a bipyridine chromophore. By comparison to [Ln⊂ 1 ]3+, [Ln⊂ 2 ]3+ presents markedly lower luminescence properties, due to worse interaction between the 2,6‐bis(pyrazol‐1‐yl)pyridine unit and the metal ion. Moreover, the luminescent metal and the triplet ligand energy levels of [Eu⊂ 2 ]3+ do not match. The effects of H2O molecules coordinated to the metal centre and of thermally activated decay processes on nonradiative deactivation to the ground‐state are also reported.  相似文献   

9.
本文通过水热法合成了含有3种不同稀土离子的层状稀土氢氧化物(Gd0.5Tb0.5-xEux)2(OH)5NO3.nH2O,并选择有机物水杨酸(HSA)作为敏化剂,通过在水热条件下的离子交换反应,成功将其以有机阴离子形式与层状稀土氢氧化物插层组装获得有机-无机杂化荧光材料(SA--LRHs∶xEu)。荧光性质测定表明,SA-通过有效的能量转移增强了Tb3+的特征绿色荧光发射,随着Eu3+含量的增加,Eu3+的特征红色荧光发射随之增强,而Tb3+的特征绿色荧光发射随之减弱。在此基础上,将发光颜色可调的有机-无机荧光材料与聚甲基丙烯酸甲酯(PMMA)复合组装出透明的荧光薄膜。  相似文献   

10.
LnAcbenz3 · 3H2O complexes of Eu3+, Tb3+, Dy3+, Sm3+, and Gd3+ with 2-acetylbenzoic acid (HAcbenz) have been synthesized. The complexes have been studied by thermogravimetry and infrared and luminescence spectroscopy. According to IR spectroscopy data, the complexation of Acbenz? with lanthanide ions occurs due to the bidentate coordination of carboxyl groups. According to thermal analysis, the complexes are dehydrated at a temperature above 140°C, and their thermodestruction begins at a temperature above 250°C. From the luminescence spectra measured at 77 and 300 K, it has been established that the integral luminescence intensity of EuAcbenz3 · 3H2O and TbAcbenz3 ° 3H2O is, respectively, 10 and 19 times higher than for tris-benzoates of the same metals. TbAcbenz3 ° 3H2O, the most intensively luminescing complex, is recommended for use as a promising luminescent material.  相似文献   

11.
The luminescence of Ce3+, Sm3+, Eu3+, Gd3+, Tb3+, and Dy3+ in NaLn(SO4)2H2O (Ln = lanthanide) is reported. Only Ce3+, Gd3+, and Tb3+ show efficient emission. This is explained in terms of an energy-gap law. Energy transfer is studied in several codoped compositions. The mutual transfer between Gd3+ ions is the only one encountered with high probability. The several transfers are discussed and where possible their rates are calculated.  相似文献   

12.
Two chelate ligands for europium(III) having minocycline (=(4S,4aS,5aR,12aS)‐4,7‐bis(dimethylamino)‐1,4,4a,5,5a,6,11,12a‐octahydro‐3,10,12,12a‐tetrahydroxy‐1,11‐dioxonaphthacene‐2‐carboxamide; 5 ) as a VIS‐light‐absorbing group were synthesized as possible VIS‐light‐excitable stable Eu3+ complexes for protein labeling. The 9‐amino derivative 7 of minocycline was treated with H6TTHA (=triethylenetetraminehexaacetic acid=3,6,9,12‐tetrakis(carboxymethyl)‐3,6,9,12‐tetraazatetradecanedioic acid) or H5DTPA (=diethylenetriaminepentaacetic acid=N,N‐bis{2‐[bis(carboxymethyl)amino]ethyl}glycine) to link the polycarboxylic acids to minocycline. One of the Eu3+ chelates, [Eu3+(minocycline‐TTHA)] ( 13 ), is moderately luminescent in H2O by excitation at 395 nm, whereas [Eu3+(minocycline‐DTPA)] ( 9 ) was not luminescent by excitation at the same wavelength. The luminescence and the excitation spectra of [Eu3+(minocycline‐TTHA)] ( 13 ) showed that, different from other luminescent EuIII chelate complexes, the emission at 615 nm is caused via direct excitation of the Eu3+ ion, and the chelate ligand is not involved in the excitation of Eu3+. However, the ligand seems to act for the prevention of quenching of the Eu3+ emission by H2O. The fact that the excitation spectrum of [Eu3+(minocycline‐TTHA)] is almost identical with the absorption spectrum of Eu3+ aqua ion supports such an excitation mechanism. The high stability of the complexes of [Eu3+(minocycline‐DTPA)] ( 9 ) and [Eu3+(minocycline‐TTHA)] ( 13 ) was confirmed by UV‐absorption semi‐quantitative titrations of H4(minocycline‐DTPA) ( 8 ) and H5(minocycline‐TTHA) ( 12 ) with Eu3+. The titrations suggested also that an 1 : 1 ligand Eu3+ complex is formed from 12 , whereas an 1 : 2 complex was formed from 8 minocycline‐DTPA. The H5(minocycline‐TTHA) ( 12 ) was successfully conjugated to streptavidin (SA) (Scheme 5), and thus the applicability of the corresponding Eu3+ complex to label a protein was established.  相似文献   

13.
《化学:亚洲杂志》2017,12(7):768-774
Bridged polysilsesquioxanes (BPs) show great potential in the development of lanthanide‐based luminescent materials, owing to their capacity to loading lanthanide complexes with high concentration and their flexible processability. A novel BP precursor, consisting of a C 3‐symmetrical benzene central core moiety, capable of sensitizing the luminescence of Eu3+ and Tb3+ is reported. Tunable, full‐color luminescent gels were facilely prepared by mixing the as‐synthesized precursor and Ln3+ ions in appropriate solvents. By either changing the Eu3+/Tb3+ molar ratio or altering the excitation wavelength, the emission colors of the final gels can be finely tuned. Additionally, the yellow‐colored emissive gel with a molar ratio of Eu3+ to Tb3+ of 0.5 can be used as an effective ratiometric luminescent sensor for distinguishing amines with lower pK a (<5) from those with higher pK a (>9).  相似文献   

14.
本文通过水热法合成了含有3种不同稀土离子的层状稀土氢氧化物 (Gd0.5Tb0.5-xEux)2(OH)5NO3·nH2O, 并选择有机物水杨酸(HSA)作为敏化剂, 通过在水热条件下的离子交换反应, 成功将其以有机阴离子形式与层状稀土氢氧化物插层组装获得有机-无机杂化荧光材料(SA--LRHs:xEu)。荧光性质测定表明, SA-通过有效的能量转移增强了Tb3+的特征绿色荧光发射, 随着Eu3+含量的增加, Eu3+的特征红色荧光发射随之增强, 而Tb3+的特征绿色荧光发射随之减弱。在此基础上, 将发光颜色可调的有机-无机荧光材料与聚甲基丙烯酸甲酯(PMMA)复合组装出透明的荧光薄膜。  相似文献   

15.
We have successfully synthesized Eu3+-doped TbPO4 nanowires, which are orderly organized to form bundle-like structure. A thermal treatment up to 600 °C does not modify the size, shape and structure of as-synthesized sample. Due to the energy overlap between Tb3+ and Eu3+, an efficient energy transfer occurs from Tb3+ to Eu3+. The effects of Eu3+ concentration and thermal treatment on the luminescent properties of Eu3+ are investigated. The increase of Eu3+ concentration leads to the increase of the energy transfer efficiency from Tb3+ to Eu3+, but also enhances the probability of the interaction between neighboring Eu3+, which results in the concentration quenching. With the heat-treatment, the luminescence of Eu3+ presents an obvious increase, but almost no change for the luminescence of Tb3+. This difference is explained based on the TGA, DTA, and fluorescent decay dynamics analyses.  相似文献   

16.
Five novel lanthanide (Eu3+ (1), Tb3+ (2), Sm3+ (3), Dy3+ (4) and Gd3+ (5)) complexes with 5-Bromonicotinic acid (5-Brnic) were synthesized and two of them (Tb3+, Sm3+) were characterized by X-ray diffraction. The results reveal that {[Tb(5-Brnic)3(H2O)3]·H2O}n (2) and [Sm(5-Brnic)3(H2O)2·H2O]2 (3) exhibit different coordination geometries and crystal structures. Complex 2 has a one-dimensional chain-like polymeric structure through the bridged 5-Brnic anions which links up two neighboring terbium ions, while Complex 3 forms a dimeric molecular structure. The lowest triplet state energy of 5-Brnic was determined to be 24 330 cm−1 corresponded to the 0-0 transition in the phosphorescence spectrum of its gadolinium complex at 411 nm. The strong luminescent emission intensities of these complexes indicated that the triplet state energy of 5-Brnic is suitable for the sensitization of luminescence of Eu3+, Tb3+, Sm3+ and Dy3+, especially for that of Tb3+ and Dy3+.  相似文献   

17.
Rare earth complex Tb(DPC)22H2O was synthesized by introducing Pyridine-2,6-dicarboxylic acid(H2DPC) as the ligand and characterized by UV, fluorescent and infrared spectra as well as elemental analysis. The complex exhibited ligand-sensitized green emission, and it has the higher sensitized luminescent efficiency and longer lifetime. The effect and mechanism of the ligand (H2DPC) on the luminescence properties of terbium complex was discussed. In device ITO/PVK/Tb(DPC)22H2O/Al, Tb3+ may be excited by intramolecular energy transfer from ligand as observed by electroluminescence. The main emitting peak at 545 nm can be attributed to the transition of 5D47F5 of Tb3+ ion and this process results in the enhancement of green emission from electroluminescence device.  相似文献   

18.
Three new isostructural 3D lanthanide metal–organic frameworks (Ln‐MOFs), {H[LnL(H2O)]?2 H2O}n ( 1‐Ln ) (Ln=Eu3+, Gd3+ and Tb3+), based on infinite lanthanide‐carboxylate chains were constructed by employing an ether‐separated 5,5′‐oxydiisophthalic acid (H4L) ligand under solvothermal reaction. 1‐Eu and 1‐Tb exhibit strong red and green emission, respectively, through the antenna effect, as demonstrated through a combination of calculation and experimental results. Moreover, a series of dichromatic doped 1‐EuxTby MOFs were fabricated by introducing different concentrations of Eu3+ and Tb3+ ions, and they display an unusual variation of luminescent colors from green, yellow, orange to red. 1‐Eu with channels decorated by ether O atoms and the open metal sites displays good performance for CO2 capture and conversion between CO2 and epoxides into cyclic carbonates.  相似文献   

19.
Time-resolved luminescence bioassay technique using lanthanide complexes as luminescent probes/sensors has shown great utilities in clinical diagnostics and biotechnology discoveries. In this work, a novel terpyridine polyacid derivative that can form highly stable complexes with lanthanide ions in aqueous media, (4′-hydroxy-2,2′:6′,2′′-terpyridine-6,6′′-diyl) bis(methylenenitrilo) tetrakis(acetic acid) (HTTA), was designed and synthesized for developing time-resolved luminescence pH sensors based on its Eu3+ and Tb3+ complexes. The luminescence characterization results reveal that the luminescence intensity of HTTA–Eu3+ is strongly dependent on the pH values in weakly acidic to neutral media (pKa = 5.8, pH 4.8–7.5), while that of HTTA–Tb3+ is pH-independent. This unique luminescence response allows the mixture of HTTA–Eu3+ and HTTA–Tb3+ (the HTTA–Eu3+/Tb3+ mixture) to be used as a ratiometric luminescence sensor for the time-resolved luminescence detection of pH with the intensity ratio of its Tb3+ emission at 540 nm to its Eu3+ emission at 610 nm, I540 nm/I610 nm, as a signal. Moreover, the UV absorption spectrum changes of the HTTA–Eu3+/Tb3+ mixture at different pHs (pH 4.0–7.0) also display a ratiometric response to the pH changes with the ratio of absorbance at 290 nm to that at 325 nm, A290 nm/A325 nm, as a signal. This feature enables the HTTA–Eu3+/Tb3+ mixture to have an additional function for the pH detection with the absorption spectrometry technique. For loading the complexes into the living cells, the acetoxymethyl ester of HTTA was synthesized and used for loading HTTA–Eu3+ and HTTA–Tb3+ into the cultured HeLa cells. The luminescence imaging results demonstrated the practical utility of the new sensor for the time-resolved luminescence cell imaging application.  相似文献   

20.
The single crystal of a supramolecule, {Eu2(p-BDC)3(Phen)2(H2O)2}n (p-BDC=1,4-benzenedicarboxylate), with characteristic luminescence of Eu3+ was obtained by means of soft chemistry. The crystal structure determination reveals that each Eu3+ ion is coordinated by five oxygen atoms of p-BDC anions, one oxygen atom from water molecule, and two nitrogen atoms of Phen, respectively, resulting in an eight-coordinated Eu3+ center and a distorted square antiprism coordination polyhedron. Four bridges, two carboxylates of μ4-p-BDC and two of μ3-p-BDC, connect two Eu atoms into a binuclear unit. Moreover, the μ3-p-BDC integrates the binuclear building blocks at the direction of b axis and the μ4-p-BDC polymerizes the structure roughly along the direction of the sum vector of axis b and c, respectively, forming two-dimensional layers. Hydrogen bonds between layers make the structure a three-dimensional network. The luminescence spectra measured under 77 K demonstrate the antenna effect of Phen and the 5D15D0 energy transfer path within Eu3+ ion. Both luminescence spectra and crystal structure lead to the conclusion that the local symmetry around the Eu3+ ion is C1 and that more than one Eu3+ ion sites having slight environmental difference are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号