首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Crystal growth of the metal–organic framework MOF‐5 was studied by atomic force microscopy (AFM) for the first time. Growth under low supersaturation conditions was found to occur by a two‐dimensional or spiral crystal growth mechanism. Observation of developing nuclei during the former reveals growth occurs through a process of nucleation and spreading of metastable and stable sub‐layers revealing that MOFs may be considered as dense phase structures in terms of crystal growth, even though they contain sub‐layers consisting of ordered framework and disordered non‐framework components. These results also support the notion this may be a general mechanism of surface crystal growth at low supersaturation applicable to crystalline nanoporous materials. The crystal growth mechanism at the atomistic level was also seen to vary as a function of the growth solution Zn/H2bdc ratio producing square terraces with steps parallel to the <100> direction or rhombus‐shaped terraces with steps parallel to the <110> direction when the Zn/H2bdc ratio was >1 or about 1, respectively. The change in relative growth rates can be explained in terms of changes in the solution species concentrations and their influence on growth at different terrace growth sites. These results were successfully applied to the growth of as‐synthesized cube‐shaped crystals to increase expression of the {111} faces and to grow octahedral crystals of suitable quality to image using AFM. This modulator‐free route to control the crystal morphology of MOF‐5 crystals should be applicable to a wide variety of MOFs to achieve the desired morphological control for performance enhancement in applications.  相似文献   

2.
The structural characterization of sublayer surfaces of MIL-101 is reported by low-dose spherical aberration-corrected high-resolution transmission electron microscopy (HRTEM). The state-of-the-art microscopy directly images atomic/molecular configurations in thin crystals from charge density projections, and uncovers the structures of sublayer surfaces and their evolution to stable surfaces regulated by inorganic Cr33-O) trimers. This study provides compelling evidence of metal–organic frameworks (MOFs) crystal growth via the assembly of sublayer surfaces and has important implications in understanding the crystal growth and surface-related properties of MOFs.  相似文献   

3.
For plasmonic copper-deficient Cu2−xS nanoparticles (NPs), accurate control of the crystal phase and morphology is highly desirable as both of which are known to determine the localized surface plasmon resonance (LSPR) wavelength and amplitude. Here, how the sulfur precursor reactivity in the synthesis of Cu2−xS NPs affects the resulting crystal phase and morphology is examined. Djurleite Cu1.94S, roxbyite Cu1.8S, digenite Cu1.8S as well as covellite CuS nanodisks were synthesized by using 1-dodecanethiol, N,N-dibutylthiourea, and crystal sulfur 1-octadecene/oleylamine solutions and their crystal phase dependent LSPR properties were exhaustively discussed. In addition, crystal phase interconversion between covellite CuS and djurleite/roxbyite Cu2−xS was realized in the presence of the above sulfur precursors. On the other hand, djurleite Cu1.94S nanorods rather than nanodisks were prepared by replacing 1-dodecanethiol with more reactive tert-dodecanethiol. The structural and morphological Cu2−xS NPs here holds great promise in the application of photothermal therapy, photocatalysis, surface-enhanced Raman scattering (SERS), and many others.  相似文献   

4.
A modulated bi-phase synthesis towards large-scale manganese 1,4-benzenedicarboxylate (MnBDC) MOFs with a precise control over their morphology (bulk vs. layered) is presented. Metal precursors and organic ligands are separated to reduce the kinetic reaction rates for better control over the crystallization process. Based on scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and Raman spectroscopy studies, the continuous ligand supply along with the presence of pyridine capping agent are highly effective in promoting the layer-by-layer growth and achieving large crystal sizes. Once layered MnBDC is stabilized, topotactic intercalation chemistry was used to demonstrate the feasibility of bromine intercalation on these layered materials. Bromine intercalation is possible between the MOFs layers for the first time. Bromine intercalation causes colossal reduction in layered MnBDC band gap while it has no observable effect on bulk MOFs.  相似文献   

5.
A modulated bi‐phase synthesis towards large‐scale manganese 1,4‐benzenedicarboxylate (MnBDC) MOFs with a precise control over their morphology (bulk vs. layered) is presented. Metal precursors and organic ligands are separated to reduce the kinetic reaction rates for better control over the crystallization process. Based on scanning electron microscopy (SEM), X‐ray diffraction (XRD), energy‐dispersive X‐ray spectroscopy (EDS), and Raman spectroscopy studies, the continuous ligand supply along with the presence of pyridine capping agent are highly effective in promoting the layer‐by‐layer growth and achieving large crystal sizes. Once layered MnBDC is stabilized, topotactic intercalation chemistry was used to demonstrate the feasibility of bromine intercalation on these layered materials. Bromine intercalation is possible between the MOFs layers for the first time. Bromine intercalation causes colossal reduction in layered MnBDC band gap while it has no observable effect on bulk MOFs.  相似文献   

6.
溶胶-凝胶法合成钛酸锌陶瓷粉体   总被引:9,自引:0,他引:9  
本文以钛酸四丁酯、乙酸锌、柠檬酸、乙二醇和乙醇为主要原料,用溶胶-凝胶(Sol-Gel)法,经两次热处理合成出均一的钛酸锌(ZnTiO3)陶瓷粉体,并用TG-DTA、XRD和FE-SEM等对其组织结构和形貌进行了表征。结果表明,热处理方式对产物组成和晶型有较大影响。  相似文献   

7.
规整、均一纳米水滑石晶体的水热合成与表征   总被引:7,自引:0,他引:7  
采用一种简便的新方法, 以Mg2+/Al3+/CO32-摩尔比为6∶2∶1的比例在水热条件下合成了[Mg-Al-CO3]水滑石. 获得的水滑石样品用XRD, FE-SEM, TEM, HRTEM, TG-DSC进行了物相、晶体形貌结构和热分析. 用动态光散射原理分析了粒度分布, 考察了水热合成的主要条件水热温度和时间对水滑石晶体尺寸及粒度分布的影响. 结果表明, 本法合成的水滑石具有均一、规整的六边形片状晶体形貌, 片状晶体直径在350 nm左右, 片的厚度约20 nm, 纯水滑石相, 粒度分布在80~420 nm. 水热温度和时间主要影响片状晶体的直径, 而对晶体形貌影响不大; 延长反应时间, 升高水热温度可使六边形晶片长大.  相似文献   

8.
Layer flexibility in two-dimensional coordination polymers (2D-CPs) contributes to several functional materials as it results in anisotropic structural response to external stimuli. Chemical modification is a common technique for modifying layer structures. This study demonstrates that crystal morphology of a cyanide-bridged 2D-CP of type [Mn(salen)]2[ReN(CN)4] ( 1 ) consisting of flexible undulating layers significantly impacts the layer configuration and assembly. Nanoplates of 1 showed an in-plane contraction of layers with a longer interlayer distance compared to the micrometer-sized rod-type particles. These effects by crystal morphology on the structure of the 2D-CP impacted the structural flexibility, resulting in dual-functional changes: the enhancement of the sensitivity of structural transformation to water adsorption and modification of anisotropic thermal expansion of 1 . Moreover, the nanoplates incorporated new adsorption sites within the layers, resulting in the uptake of an additional water molecule compared to the micrometer-sized rods.  相似文献   

9.
Diffusion limitation in micropores of zeolites leads to a demand for optimization of zeolite morphology and/or porosity. However, tailoring crystallization processes to realize targeted morphology/porosity is a major challenge in zeolite synthesis. On the basis of previous work on the salt‐aided, seed‐induced route, the template effect of seeds on the formation of micropores, mesopores and even macropores was further explored to selectively achieve desired hierarchical architectures. By carefully investigating the crystallization processes of two typical samples with distinct crystal morphologies, namely, 1) nanocrystallite‐oriented self‐assembled ZSM‐5 zeolite and 2) enriched intracrystal mesoporous ZSM‐5 zeolite, a detailed mechanism is proposed to clarify the role of silicalite‐1 seeds in the formation of diverse morphologies in a salt‐rich heterogeneous system, combined with the transformation of seed‐embedded aluminosilicate gel. On the basis of these conclusions, the morphologies/porosities of products were precisely tailored by deliberately adjusting the synthesis parameters (KF/Si, tetrapropylammonium bromide/Si and H2O/Si ratios and type of organic template) to regulate the kinetics of seed dissolution and seed‐induced recrystallization. This work may not only provide a practical route to control zeolite crystallization for tailoring crystal morphology, but also expands the knowledge of crystal growth mechanisms in a heterogeneous system.  相似文献   

10.
二氧化钛(TiO2)具有化学稳定性高、无毒、价格低廉、来源广泛及光电性能优异等优点,被广泛应用于太阳能电池和光催化等领域,尤其是在污染物的光催化降解方面,可很好地解决当前的环境污染问题。但一方面受带隙宽度限制,使其对太阳光的利用率不足5%,不能充分利用太阳光中的可见光;另一方面由于光生电子-空穴容易结合,催化效率低,从而使TiO2的实际应用受到限制。因此必须采取合适的措施,一方面要增强TiO2对可见光的吸收,提高对太阳光的利用率;另一方面要抑制光生电子-空穴的复合,提高光催化效率。目前越来越多的科学家通过控制TiO2的形貌、晶型、特殊晶面暴露等手段来提高TiO2光生电子-空穴的传输速率和光电转换效率。本文主要综述了近年来在TiO2光催化剂的特殊形貌和特殊晶面暴露等方面的研究进展,对未来的研究和发展方向作了展望。  相似文献   

11.
Metal–organic frameworks (MOFs) containing ZrIV‐based secondary building units (SBUs), as in the UiO‐66 series, are receiving widespread research interest due to their enhanced chemical and mechanical stabilities. We report the synthesis and extensive characterisation, as both bulk microcrystalline and single crystal forms, of extended UiO‐66 (Zr and Hf) series MOFs containing integral unsaturated alkene, alkyne and butadiyne units, which serve as reactive sites for postsynthetic modification (PSM) by halogenation. The water stability of a Zr–stilbene MOF allows the dual insertion of both ?OH and ?Br groups in a single, aqueous bromohydrination step. Quantitative bromination of alkyne‐ and butadiyne‐containing MOFs is demonstrated to be stereoselective, as a consequence of the linker geometry when bound in the MOFs, while the inherent change in hybridisation and geometry of integral linker atoms is facilitated by the high mechanical stabilities of the MOFs, allowing bromination to be characterised in a single‐crystal to single‐crystal (SCSC) manner. The facile addition of bromine across the unsaturated C?C bonds in the MOFs in solution is extended to irreversible iodine sequestration in the vapour phase. A large‐pore interpenetrated Zr MOF demonstrates an I2 storage capacity of 279 % w/w, through a combination of chemisorption and physisorption, which is comparable to the highest reported capacities of benchmark iodine storage materials for radioactive I2 sequestration. We expect this facile PSM process to not only allow trapping of toxic vapours, but also modulate the mechanical properties of the MOFs.  相似文献   

12.
二氧化钛(TiO2)具有化学稳定性高、无毒、价格低廉、来源广泛及光电性能优异等优点,被广泛应用于太阳能电池和光催化等领域,尤其是在污染物的光催化降解方面,可很好地解决当前的环境污染问题。但一方面受带隙宽度限制,使其对太阳光的利用率不足5%,不能充分利用太阳光中的可见光;另一方面由于光生电子-空穴容易结合,催化效率低,从而使TiO2的实际应用受到限制。因此必须采取合适的措施,一方面要增强TiO2对可见光的吸收,提高对太阳光的利用率;另一方面要抑制光生电子-空穴的复合,提高光催化效率。目前越来越多的科学家通过控制TiO2的形貌、晶型、特殊晶面暴露等手段来提高TiO2光生电子-空穴的传输速率和光电转换效率。本文主要综述了近年来在TiO2光催化剂的特殊形貌和特殊晶面暴露等方面的研究进展,对未来的研究和发展方向作了展望。  相似文献   

13.
Cisapride monohydrate (systematic name: 4‐amino‐5‐chloro‐N‐{(3RS,4SR)‐1‐[3‐(4‐fluorophenoxy)propyl]‐3‐methoxypiperidin‐4‐yl}‐2‐methoxybenzamide monohydrate), C23H29ClFN3O4·H2O, is a nondopamine‐blocking gastrokinetic drug. A new polymorph of cisapride monohydrate has been reported nearly three decades after the report of its first known crystal structure [Collin et al. (1989). J. Mol. Struct. 214 , 159–175]. The second polymorph is also monoclinic, but with different unit‐cell parameters. A comparison of both polymorphic forms shows that the difference is thus not in the molecular conformation but in the arrangements of molecules in the crystal packing. The crystal morphology of two forms was predicted with the BFDH model in Materials Studio and inferred that the powder of the new polymorph has better flowability than the original polymorph. The results of DSC (differential scanning calorimetry) analysis and slurry experiments show that both polymorphs are stable at room temperature.  相似文献   

14.
Four new three‐dimensional isostructural lanthanide–cadmium metal–organic frameworks (Ln–Cd MOFs), [LnCd2(imdc)2(Ac)(H2O)2]?H2O (Ln=Pr ( 1 ), Eu ( 2 ), Gd ( 3 ), and Tb ( 4 ); H3imdc=4,5‐imidazoledicarboxylic acid; Ac=acetate), have been synthesized under hydrothermal conditions and characterized by IR, elemental analyses, inductively coupled plasma (ICP) analysis, and X‐ray diffraction. Single‐crystal X‐ray diffraction shows that two LnIII ions are surrounded by four CdII ions to form a heteronuclear building block. The blocks are further linked to form 3D Ln–Cd MOFs by the bridging imdc3? ligand. Furthermore, the left‐ and right‐handed helices array alternatively in the lattice. Eu–Cd and Tb–Cd MOFs can emit characteristic red light with the EuIII ion and green light with the TbIII ion, respectively, while both Gd–Cd and Pr–Cd MOFs generate blue emission when they are excited. Different concentrations of Eu3+ and Tb3+ ions were co‐doped into Gd–Cd/Pr–Cd MOFs, and tunable luminescence from yellow to white was achieved. White‐light emission was obtained successfully by adjusting the excitation wavelength or the co‐doping ratio of the co‐doped Gd–Cd and Pr–Cd MOFs. These results show that the relative emission intensity of white light for Gd–Cd:Eu3+,Tb3+ MOFs is stronger than that of Pr–Cd:Eu3+,Tb3+ MOFs, which implies that the Gd complex is a better matrix than the Pr complex to obtain white‐light emission materials.  相似文献   

15.
金属有机骨架(Metal organic framework,MOF)配位聚合物作为一类重要的多孔材料具有诸多独特的性能.新型MOF材料的结构表征与确定一直是该研究领域的关键性研究问题.由于单晶X-射线衍射等结构测定方法对晶体尺寸有一定限制,小尺寸MOF新材料的晶体结构确定一直是亟待解决的科学难题.透射电子显微分析方法(Transmission electron microscopy,TEM)作为纳米尺寸晶体材料最有力的结构表征手段之一,已经被逐渐应用于MOF新材料领域,展现出了巨大的应用潜力.本文以几个国内外有代表性的工作为例,浅析TEM在MOF材料领域的发展现状.  相似文献   

16.
The morphological evolution of isolated individual single crystals deposited on solid substrates was investigated during annealing experiments using in situ and ex situ atomic force microscopy techniques. The crystal morphology changed during annealing at temperatures slightly above the original crystallization temperature of the crystals, far below their melting temperature. Evenly distributed cavities penetrated the crystals, and the number of cavities increased with a rising annealing temperature until the adjacent cavities coalesced. The thickness of the crystals increased during annealing at temperatures slightly above the crystallization temperature. Annealing experiments at fixed temperatures showed that the reorganization process (cavity formation and single‐crystal thickening) was fast. Depending on the annealing temperature, the final morphology was formed in seconds. This behavior suggests high chain mobility as well as a homogeneous solid‐state reorganization of the entire single crystal at low annealing temperatures. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 763–770, 2001  相似文献   

17.
魏娜  周思彤  赵震 《化学通报》2023,86(2):159-165
金属有机骨架(Metal-organic frameworks, MOFs)材料因具有超大比表面积、可修饰的化学结构、可调的孔隙形状和大小、开放的金属位点等独特的结构优越性而被广泛用于催化CO2环加成反应的研究中。然而,大部分MOFs材料在此反应中往往需要在助催化剂或溶剂的存在下才能发挥其催化性能,这也导致了产物分离困难、资源浪费等问题。因此,开发能够单独催化CO2环加成反应的MOFs材料成为当前科学家们研究的热点。在MOFs骨架上或孔腔内修饰离子液体是构筑此类催化体系的一种重要途径。本文对近年来这类MOFs的构筑策略、催化CO2环加成反应的性能以及催化机理进行了总结,同时还对MOFs组成、形貌以及催化反应条件等因素对催化活性的影响进行了探讨。  相似文献   

18.
Probing into the new heterostructure based on metal–organic frameworks (MOFs) and optimizing their photocatalytic efficiency under solar energy irradiation are one of hot topics in extending applications of MOFs in photocatalytic technology. Inspired by the excellent visible-light responses and photocatalytic activities of inorganic silver salts, in this work, we focused on the construction of hybrid photocatalysts involving Ag-MOF and silver cyanamide (Ag2NCN). Two opposite in situ synthesis routes were adopted, which are hydrothermally producing Ag-MOF in the presence of Ag2NCN (route A) or precipitating Ag2NCN in the existence of Ag-MOF (route B), and the mass ratio of Ag2NCN vs. Ag-MOF was optimized. The morphology and structure character show that the synthetic routes have no obvious influences on the crystal structure, but change the morphology and size of final hybrid photocatalysts. The photocatalytic degradation of Rhodamine B under simulated solar energy has been tested to evaluate the photocatalytic activities for resulting hybrids. Compared to single Ag-MOF and Ag2NCN, the enhanced photocatalytic rates are represented by the hybrids. The electrochemical analyses and the active species trapping experiments were conducted to clarify the photocatalytic mechanism for resulting hybrids. The good recycling photocatalytic results indicate the prospect applications of Ag-MOF based hybrid photocatalysts.  相似文献   

19.
Defect engineering and metal encapsulation are considered as valuable approaches to fine-tune the reactivity of metal–organic frameworks. In this work, various MOF-808 (Zr) samples are synthesized and characterized with the final aim to understand how defects and/or platinum nanoparticle encapsulation act on the intrinsic and reactive properties of these MOFs. The reactivity of the pristine, defective and Pt encapsulated MOF-808 is quantified with water adsorption and CO2 adsorption calorimetry. The results reveal strong competitive effects between crystal morphology and missing linker defects which in turn affect the crystal morphology, porosity, stability, and reactivity. In spite of leading to a loss in porosity, the introduction of defects (missing linkers or Pt nanoparticles) is beneficial to the stability of the MOF-808 towards water and could also be advantageously used to tune adsorption properties of this MOF family.  相似文献   

20.
Nanoporous metal organic frameworks (MOFs) form one of the newest families of crystalline nanoporous material that is receiving worldwide attention. Successful use of MOFs for application requires not only development of new materials but also a need to control their crystal properties such as size, morphology, and defect concentration. An understanding of the crystal growth processes is necessary in order to aid development of routes to control such properties of the crystallites. In this Perspective article we aim to provide a short overview of the current work and understanding concerning the nucleation and growth processes of nanoporous MOFs and how this work may be expanded upon to further our comprehension of this subject. We also focus heavily on in situ studies that provide real time information on the developing materials and generally provide the most conclusive findings on the processes under investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号