首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conserved threonine (Thr) residue in the penultimate position of the leader peptide of lasso peptides microcin J25 and capistruin can be effectively replaced by several amino acids close in size and shape to Thr. These findings suggest a model for lasso peptide biosynthesis in which the Thr sidechain is a recognition element for the lasso peptide maturation machinery.  相似文献   

2.
Lasso peptides are a structurally unique class of bioactive peptides characterized by a knotted arrangement, where the C-terminus threads through an N-terminal macrolactam ring. Although ribosomally synthesized, only the gene cluster for the best studied lasso peptide MccJ25 from Escherichia coli consisting of the precursor protein McjA and the processing and immunity proteins McjB, McjC, and McjD is known. Through genome mining studies, we have identified homologues of all four proteins in Burkholderia thailandensis E264 and predicted this strain to produce a lasso peptide. Here we report the successful isolation of the predicted peptide, named capistruin. Upon optimization of the fermentation conditions, mass spectrometric and NMR structural studies proved capistruin to adopt a novel lasso fold. Heterologous production of the lasso peptide in Escherichia coli showed that the identified genes are sufficient for the biosynthesis of capistruin, which exhibits antimicrobial activity against closely related Burkholderia and Pseudomonas strains. In general, our rational approach should be widely applicable for the isolation of new lasso peptides to explore their high structural stability and diverse biological activity.  相似文献   

3.
Lasso peptides are a unique family of natural products whose structures feature a specific threaded fold, which confers these peptides the resistance to thermal and proteolytic degradation. This stability gives lasso peptides excellent pharmacokinetic properties, which together with their diverse reported bioactivities have garnered extensive attention because of their drug development potential. Notably, the threaded fold has proven quite inaccessible by chemical synthesis, which has hindered efficient generation of structurally diverse lasso peptides. We herein report the discovery of a new lasso peptide stlassin (1) by gene activation based on a Streptomyces heterologous expression system. Site-directed mutagenesis on the precursor peptide-encoding gene is carried out systematically, generating 17 stlassin derivatives (2–17 and 21) with residue-replacements at specific positions of 1. The solution NMR structures of 1, 3, 4, 14 and 16 are determined, supporting structural comparisons that ultimately enabled the rational production of disulfide bond-containing derivatives 18 and 19, whose structures do not belong to any of the four classes currently used to classify lasso peptides. Several site-selective chemical modifications are first applied on 16 and 21, efficiently generating new derivatives (20, 22–27) whose structures bear various decorations beyond the peptidyl monotonicity. The high production yields of these stlassin derivatives facilitate biological assays, which show that 1, 4, 16, 20, 21 and 24 possess antagonistic activities against the binding of lipopolysaccharides to toll-like receptor 4 (TLR4). These results demonstrate proof-of-concept for the combined mutational/chemical generation of lasso peptide libraries to support drug lead development.

A new class II lasso peptide stlassin (1) was discovered and stlassin derivatives (2–27) were rationally generated by biosynthetic gene mutations and site-selective chemical modifications, expanding the structural diversity of lasso peptides.  相似文献   

4.
A broadly applicable chemical cleavage methodology to facilitate MS/MS sequencing was developed for macrocyclic and lasso peptides, which hold promise as exciting new therapeutics. Existing methods such as Edman degradation, CNBr cleavage, and enzymatic digestion are either limited in scope or completely fail in cleavage of constrained nonribosomal peptides. Importantly, the new method was utilized for synthesizing a unique peptide‐based rotaxane (both cyclic and threaded) from the lasso peptide, benenodin‐1 ΔC5.  相似文献   

5.
A broadly applicable chemical cleavage methodology to facilitate MS/MS sequencing was developed for macrocyclic and lasso peptides, which hold promise as exciting new therapeutics. Existing methods such as Edman degradation, CNBr cleavage, and enzymatic digestion are either limited in scope or completely fail in cleavage of constrained nonribosomal peptides. Importantly, the new method was utilized for synthesizing a unique peptide‐based rotaxane (both cyclic and threaded) from the lasso peptide, benenodin‐1 ΔC5.  相似文献   

6.
Two enzymes catalyze the maturation of a lasso peptide in Escherichia coli   总被引:1,自引:0,他引:1  
Microcin J25 (MccJ25) is a gene-encoded lasso peptide secreted by Escherichia coli which exerts a potent antibacterial activity by blocking RNA polymerase. Here we demonstrate that McjB and McjC, encoded by genes in the MccJ25 gene cluster, catalyze the maturation of MccJ25. Requirement for both McjB and McjC was shown by gene inactivation and complementation assays. Furthermore, the conversion of the linear precursor McjA into mature MccJ25 was obtained in vitro in the presence of McjB and McjC, all proteins being produced by recombinant expression in E. coli. Analysis of the amino acid sequences revealed that McjB could possess proteolytic activity, whereas McjC would be the ATP/Mg(2+)-dependent enzyme responsible for the formation of the Gly1-Glu8 amide bond. Finally, we show that putative lasso peptides are widespread among Proteobacteria and Actinobacteria.  相似文献   

7.
Microcin J25 (MccJ25) is a ribosomally synthesized antimicrobial peptide that has an unusual threaded lasso structure in which the C-terminal "tail" of the peptide is fed through a macrocyclic "ring" formed by the N-terminal residues. Production of MccJ25 in Escherichia coli is dependent upon a four-gene cluster encoding the structural gene mcjA, two maturation enzymes mcjB and mcjC, and an immunity factor, mcjD, in the form of an MccJ25 export pump. Here we have developed a system for orthogonal control of the expression of mcjA and mcjD, thus permitting independent control of MccJ25 production and export/immunity in E. coli. We used this system to screen saturation mutagenesis libraries targeted to either the ring or tail portions of MccJ25 and discovered nearly 100 new MccJ25 variants that retain antimicrobial function. While multiple amino acid substitutions in the tail portion of the peptide are well-tolerated, mutagenesis of the ring portion of the peptide is detrimental to the antimicrobial function of MccJ25. We demonstrated that the decreased function of the ring variants is due to the inability of these variants to be transported to the cytoplasm of susceptible strains. Additionally, we found several MccJ25 variants from the tail library with improved efficacy toward the MccJ25-sensitive strains E. coli and Salmonella enterica serovar Newport with the best variants exhibiting a nearly 5-fold increase in potency. The results described here provide further evidence that diverse amino acid sequences can be tolerated by the rigid lasso peptide fold.  相似文献   

8.
9.
Lasso peptides are characterized by a mechanically interlocked structure, where the C-terminal tail of the peptide is threaded and trapped within an N-terminal macrolactam ring. Their compact and stable structures have a significant impact on their biological and physical properties and make them highly interesting for drug development. Ion mobility - mass spectrometry (IM-MS) has shown to be effective to discriminate the lasso topology from their corresponding branched-cyclic topoisomers in which the C-terminal tail is unthreaded. In fact, previous comparison of the IM-MS data of the two topologies has yielded three trends that allow differentiation of the lasso fold from the branched-cyclic structure: (1) the low abundance of highly charged ions, (2) the low change in collision cross sections (CCS) with increasing charge state and (3) a narrow ion mobility peak width. In this study, a three-dimensional plot was generated using three indicators based on these three trends: (1) mean charge divided by mass (ζ), (2) relative range of CCS covered by all protonated molecules (ΔΩ/Ω) and (3) mean ion mobility peak width (δΩ). The data were first collected on a set of twenty one lasso peptides and eight branched-cyclic peptides. The indicators were obtained also for eight variants of the well-known lasso peptide MccJ25 obtained by site-directed mutagenesis and further extended to five linear peptides, two macrocyclic peptides and one disulfide constrained peptide. In all cases, a clear clustering was observed between constrained and unconstrained structures, thus providing a new strategy to discriminate mechanically interlocked topologies.
Graphical Abstract ?
  相似文献   

10.
A lasso peptide MS-271 is a ribosomally synthesized and post-translationally modified peptide (RiPP) consisting of 21 amino acids with a d-tryptophan (Trp) at its C terminus. The presence of d-amino acids is rare in RiPPs and few mechanisms of d-amino acid introduction have been characterized. Here, we report the identification of MslH, previously annotated as a hypothetical protein, as a novel epimerase involved in the post-translational epimerization of the C-terminal Trp residue of the precursor peptide MslA. MslH is the first epimerase that catalyzes epimerization at the Cα center adjacent to a carboxylic acid in a cofactor-independent manner. We also demonstrate that MslH exhibits broad substrate specificity toward the N-terminal region of the core peptide, showing that MslH-type epimerases offer opportunities in peptide bioengineering.

The biosynthesis of d-tryptophan containing lasso peptide MS-271 involves the epimerization of a ribosomal peptide MslA catalyzed by a novel class of metal- and cofactor-independent peptide epimerase MslH.  相似文献   

11.
Lasso peptides constitute a class of bioactive peptides sharing a knotted structure where the C-terminal tail of the peptide is threaded through and trapped within an N-terminal macrolactam ring. The structural characterization of lasso structures and differentiation from their unthreaded topoisomers is not trivial and generally requires the use of complementary biochemical and spectroscopic methods. Here we investigated two antimicrobial peptides belonging to the class II lasso peptide family and their corresponding unthreaded topoisomers: microcin J25 (MccJ25), which is known to yield two-peptide product ions specific of the lasso structure under collision-induced dissociation (CID), and capistruin, for which CID does not permit to unambiguously assign the lasso structure. The two pairs of topoisomers were analyzed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS) upon CID, infrared multiple photon dissociation (IRMPD), and electron capture dissociation (ECD). CID and ECD spectra clearly permitted to differentiate MccJ25 from its non-lasso topoisomer MccJ25-Icm, while for capistruin, only ECD was informative and showed different extent of hydrogen migration (formation of c•/z from c/z•) for the threaded and unthreaded topoisomers. The ECD spectra of the triply-charged MccJ25 and MccJ25-lcm showed a series of radical b-type product ions ( bn · ) \left( {b{\prime}_n^{ \bullet }} \right) . We proposed that these ions are specific of cyclic-branched peptides and result from a dual c/z• and y/b dissociation, in the ring and in the tail, respectively. This work shows the potentiality of ECD for structural characterization of peptide topoisomers, as well as the effect of conformation on hydrogen migration subsequent to electron capture.  相似文献   

12.
Lasso peptides are natural products that assume a unique lariat knot topology. Lasso peptide isopeptidases (IsoPs) eliminate this topology through isopeptide bond cleavage. To probe how these enzymes distinguish between substrates and hydrolyze only isopeptide bonds, we examined the structure and mechanism of a previously uncharacterized IsoP from the proteobacterium Sphingopyxis alaskensis RB2256 (SpI‐IsoP). We demonstrate that SpI‐IsoP efficiently and specifically linearizes the lasso peptide sphingopyxin I (SpI) and variants thereof. We also present crystal structures of SpI and SpI‐IsoP, revealing a threaded topology for the former and a prolyl oligopeptidase (POP)‐like fold for the latter. Subsequent structure‐guided mutational analysis allowed us to propose roles for active‐site residues. Our study sheds light on lasso peptide catabolism and expands the engineering potential of these fascinating molecules.  相似文献   

13.
The chemical coupling of two peptide fragments to give the peptide K1 K2 (shown in the helical wheel diagram on the right) is autocatalytic at high NaClO4 concentrations (1 M ). Under these conditions K1 K2 assumes a coiled-coil conformation, which can function as a template for the coupling. Autocatalysis is not observed under conditions that prevent formation of the coiled-coil conformation.  相似文献   

14.
An electrophile caught like a mouse in a trap! An anionic stopper–wheel complex acts as a supramolecular nucleophile in an almost quantitative synthesis of a phenyl ether rotaxane. The electrophilic semiaxle has to thread through the macrocycle in order to contact the bulky phenolate group that is positioned on the other side, and probably tightly held in place by hydrogen bonds.  相似文献   

15.
New [2]rotaxanes were prepared by the threading and the slipping procedure, the latter having the advantage of not needing templating interactions. As a consequence, the first [2]rotaxane consisting of a tetraamide macrocycle and a pure hydrocarbon thread was synthesized (see 12a in Scheme 2). Sterically matching wheels and axles being the basic requirement of a successful slipping approach to rotaxanes, mono- and bishomologous wheels 5b , c with larger diameters than the parent 5a were synthesized and mechanically connected to amide axles 10a – c which were stoppered with blocking groups of different spatial demand (Scheme 1). The deslipping kinetics of the resulting rotaxanes 8a – c and 9a , b were measured and compared; it emerges that even slight increases in the wheel size require larger stoppers to stabilize the mechanical bond. Moreover, when the deslipping rate of 8a (amide wheel and amide axle) was determined in either DMF or THF, a strong dependence on the solvent polarity, which is caused by a differing extent of intramolecular H-bonds between the wheel and the axle, was observed. As expected, no such dependence was detected for rotaxane 12a (amide wheel and hydrocarbon axle) whose components cannot interact via H-bonds. The comparison of the sterically matching pairs of macrocycles and blocking groups, found by a systematic fitting based on the results of slipping and deslipping experiments, with other rotaxane types bearing similar stoppers allows conclusions concerning the relative cavity size of wheels of various structure.  相似文献   

16.
Entangled proteins have attracted significant research interest. Herein, we report the first rationally designed lasso proteins, or protein [1]rotaxanes, by using a p53dim-entwined dimer for intramolecular entanglement and a SpyTag-SpyCatcher reaction for side-chain ring closure. The lasso structures were confirmed by proteolytic digestion, mutation, NMR spectrometry, and controlled ligation. Their dynamic properties were probed by experiments such as end-capping, proteolytic digestion, and heating/cooling. As a versatile topological intermediate, a lasso protein could be converted to a rotaxane, a heterocatenane, and a “slide-ring” network. Being entirely genetically encoded, this robust and modular lasso-protein motif is a valuable addition to the topological protein repertoire and a promising candidate for protein-based biomaterials.  相似文献   

17.
Rotaxanes are a type of mechanically interlocked molecules (MIMs), constituted by at least a thread surrounded by a wheel, which are widely employed in the research field of artificial molecular machines. Although applications retaining the integrity of the mechanical bond are usually reported, the dethreading of the components can be crucial to develop some advanced applications. Thus, different dethreading strategies have been reported, and advanced applications which require such a process have turned out to be suitable approaches towards machine-like operation. This review article covers recent examples of applications of pseudorotaxanes and rotaxanes in which dethreading processes have a key role to accomplish the desired function.  相似文献   

18.
Cell-penetrating peptides are used in the delivery of peptides and biologics, with some cell-penetrating peptides found to be more efficient than others. The exact mechanism of how they interact with the cell membrane and penetrate it, however, remains unclear. This study attempts to investigate the difference in free energy profiles of three cell-penetrating peptides (TAT, CPP1 and CPP9) with a model lipid bilayer (DOPC) using molecular dynamics pulling simulations with umbrella sampling. Potential mean force (PMF) and free energy barrier between the peptides and DOPC are determined using WHAM analysis and MM-PBSA analysis, respectively. CPP9 is found to have the smallest PMF value, followed by CPP1 and TAT, consistent with the experimental data. YDEGE peptide, however, does not give the highest PMF value, although it is a non-cell-permeable peptide. YDEGE is also found to form water pores, alongside with TAT and CPP9, suggesting that it is difficult to distinguish true water pore formation from artefacts arising from pulling simulations. On the contrary, free energy analysis of the peptide-DOPC complex at the lipid-water interface with MM-PBSA provides results consistent with experimental data with CPP9 having the least interaction with DOPC and lowest free energy barrier, followed by CPP1, TAT and YDEGE. These findings suggest that peptide-lipid interaction at the lipid-water interface has a direct correlation with the penetration efficiency of peptides across the lipid bilayer.  相似文献   

19.
We estimate the binding free energy between peptides and an MHC class II molecule using molecular dynamics (MD) simulations with the weighted histogram analysis method (WHAM). We show that, owing to its more thorough sampling in the available computational time, the binding free energy obtained by pulling the whole peptide using a coarse‐grained (CG) force field (MARTINI) is less prone to significant error induced by inadequate‐sampling than using an atomistic force field (AMBER). We further demonstrate that using CG MD to pull 3–4 residue peptide segments while leaving the remaining peptide segments in the binding groove and adding up the binding free energies of all peptide segments gives robust binding free energy estimations, which are in good agreement with the experimentally measured binding affinities for the peptide sequences studied. Our approach thus provides a promising and computationally efficient way to rapidly and reliably estimate the binding free energy between an arbitrary peptide and an MHC class II molecule. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
Covering: up to May 2012Lasso peptides are a class of ribosomally-synthesized and posttranslationally-modified natural products with diverse bioactivities. This review describes the structure and function of all known lasso peptides (as of mid-2012) and covers our current knowledge about the biosynthesis of those molecules. The isolation and characterization of lasso peptides are also covered as are bioinformatics strategies for the discovery of new lasso peptides from genomic sequence data. Several studies on the engineering of new or improved function into lasso peptides are highlighted, and unanswered questions in the field are also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号