首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An iridium-catalyzed selective ortho-monoiodination of benzoic acids with two equivalent C−H bonds is presented. A wide range of electron-rich and electron-poor substrates undergo the reaction under mild conditions, with >20:1 mono/di selectivity. Importantly, the C−H iodination occurs selectively ortho to the carboxylic acid moiety in substrates bearing competing coordinating directing groups. The reaction is performed at room temperature and no inert atmosphere or exclusion of moisture is required. Mechanistic investigations revealed a substrate-dependent reversible C−H activation/protodemetalation step, a substrate-dependent turnover-limiting step, and the crucial role of the AgI additive in the deactivation of the iodination product towards further reaction.  相似文献   

2.
Despite the advances in the field of carbon-halogen bond formation, the straightforward catalytic access to selectively functionalized iodoaryls remains a challenge. Here, we report a one-pot synthesis of ortho-iodobiaryls from aryl iodides and bromides by palladium/norbornene catalysis. This new example of Catellani reaction features the initial cleavage of a C(sp2)−I bond, followed by the key formation of a palladacycle through ortho C−H activation, the oxidative addition of an aryl bromide and the ultimate restoration of the C(sp2)−I bond. A large variety of valuable o-iodobiaryls has been synthesized in satisfactory to good yields and their derivatization have been described too. Beyond the synthetic utility of this transformation, a DFT study provides insights on the mechanism of the key reductive elimination step, which is driven by an original transmetallation between palladium(II)-halides complexes.  相似文献   

3.
Fluorine is known to promote ortho-C−H metalation. Based upon this reactivity, we employed an activated norbornene that traps the ortho-palladation intermediate and is then relayed to the meta position, leading to meta-selective C−H arylation of fluoroarenes. Deuterium experiment suggests that this meta-arylation is initiated by ortho C−H activation and the catalytic cycle is terminated by C-2 protonation. A dual-ligand system is crucial for the observed high reactivity and site selectivity. Applying this approach to simple benzene or other arenes also affords arylation products with good yield and site selectivity.  相似文献   

4.
Herein, we report the meta-nitration of arenes bearing ortho/para directing group(s) using the iridium-catalyzed C−H borylation reaction followed by a newly developed copper(II)-catalyzed transformation of the crude aryl pinacol boronate esters into the corresponding nitroarenes in a one-pot fashion. This protocol allows the synthesis of meta-nitrated arenes that are tedious to prepare or require multistep synthesis using the existing methods. The reaction tolerates a wide array of ortho/para-directing groups, such as −F, −Cl, −Br, −CH3, −Et, −iPr −OCH3, and −OCF3. It also provides regioselective access to the nitro derivatives of π-electron-deficient heterocycles, such as pyridine and quinoline derivatives. The application of this method is demonstrated in the late-stage modification of complex molecules and also in the gram-scale preparation of an intermediate en route to the FDA-approved drug Nilotinib. Finally, we have shown that the nitro product obtained by this strategy can also be directly converted to the aniline or hindered amine through Baran's amination protocol.  相似文献   

5.
Hypervalent organoiodane reagents are ubiquitous in organic synthesis, both as oxidants and as electrophilic group-transfer agents. In addition to these hallmark applications, a complementary strategy is gaining momentum that exploits the ability of λ3-iodanes to undergo iodine-to-arene group transfer, for example, via iodonio-Claisen-type rearrangement processes. This Minireview discusses recent advances in the use of this method to access a variety of the C−H-functionalized iodoarenes. While Section 2 is focused on the ortho C−H propargylation, allylation, and the more unusual para C−H benzylation, Section 3 is devoted to the C-arylation of enol and phenol substrates. The accompanying discussion includes mechanistic considerations and goes into the synthetic applications of the final iodoarene cores. The Minireview concludes with further conceptual extensions of the method, including the use of non-conventional coupling partners (for example, cyanoalkylation), improved access to λ3-iodane building blocks, and the development of iterative approaches to polysubstituted iodoarenes.  相似文献   

6.
RhIII-catalyzed C−H functionalization reaction yielding isoindolinones from aryl hydroxamates and ortho-substituted styrenes is reported. The reaction proceeds smoothly under mild conditions at room temperature, and tolerates a range of functional groups. Experimental and computational investigations support that the high regioselectivity observed for these substrates results from the presence of an ortho-substituent embedded in the styrene. The resulting isoindolinones are valuable building blocks for the synthesis of bioactive compounds. They provide easy access to the natural-product-like compounds, isoindolobenzazepines, in a one-pot two-step reaction. Selected isoindolinones inhibited Hedgehog (Hh)-dependent differentiation of multipotent murine mesenchymal progenitor stem cells into osteoblasts.  相似文献   

7.
A metal-free C−H allylation strategy is described to access diverse functionalized ortho-allyl-iodoarenes. The method employs hypervalent (diacetoxy)iodoarenes and proceeds through the iodane-guided “iodonio-Claisen” allyl transfer. The use of allylsilanes bearing electron-withdrawing functional groups unlocks the functionalization of a broad range of substrates, including electron-neutral and electron-poor rings. The resulting ortho-allylated iodoarenes are versatile building blocks, with examples of downstream transformation including a concise synthesis of the experimental antimitotic core of Dosabulin. DFT calculations shed additional light on the reaction mechanism, with notable aspects including the aromatic character of the transition-state structure for the [3,3] sigmatropic rearrangement, as well as the highly stereoconvergent nature of the trans-product formation.  相似文献   

8.
The reactivity of the electron-rich anionic AlI aluminyl compound K2[(NON)Al]2 (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) towards mono- and disubstituted arenes is reported. C−H activation chemistry with n-butylbenzene gives exclusively the product of activation at the arene meta position. Mechanistically, this transformation proceeds in a single step via a concerted Meisenheimer-type transition state. Selectivity is therefore based on similar electronic factors to classical SNAr chemistry, which implies the destabilisation of transition states featuring electron-donating groups in either ortho or para positions. In the cases of toluene and the three isomers of xylene, benzylic C−H activation is also possible, with the product(s) formed reflecting the feasibility (or otherwise) of competing arene C−H activation at a site which is neither ortho nor para to a methyl substituent.  相似文献   

9.
Contrary to the general belief that Pd-catalyzed cross-coupling at sites of severe steric hindrance are disfavored, we herein show that the oxidative addition to C−Br ortho to an adamantyl group is as favored as the corresponding adamantyl-free system due to attractive dispersion forces. This enabled the development of a fully selective arylation and alkylation of C−Br ortho to an adamantyl group, even if challenged with competing non-hindered C−OTf or C−Cl sites. The method makes use of an air-stable PdI dimer and enables straightforward access to diversely substituted therapeutically important adamantylarenes in 5–30 min.  相似文献   

10.
A novel ruthenium-catalyzed C−H activation methodology for hydrogen isotope exchange of aromatic carbonyl compounds is presented. In the presence of catalytic amounts of specific amine additives, a transient directing group is formed in situ, which directs selective deuteration. A high degree of deuteration is achieved for α-carbonyl and aromatic ortho-positions. In addition, appropriate choice of conditions allows for exclusive labeling of the α-carbonyl position while a procedure for the preparation of merely ortho-deuterated compounds is also reported. This methodology proceeds with good functional group tolerance and can be also applied for deuteration of pharmaceutical drugs. Mechanistic studies reveal a kinetic isotope effect of 2.2, showing that the C−H activation is likely the rate-determining step of the catalytic cycle. Using deuterium oxide as a cheap and convenient source of deuterium, the methodology presents a cost-efficient alternative to state-of-the-art iridium-catalyzed procedures.  相似文献   

11.
This paper describes the Pd(II)-catalyzed, picolinamide-directing-group-aided C(sp2)−H (ortho) functionalization of racemic and enantiopure β-phenylalanines and 3-amino-3-phenylpropanols (1,3-amino alcohols). The C(sp2)−H (ortho) functionalizations including arylation, bromination, iodination, and alkoxylation were attempted. The C(sp2)−H (ortho) arylation reactions gave biaryl or terphenyl-type β-phenylalanine scaffolds, halogenation and methoxylation reactions gave ortho C−H halogenated or methoxylated β-phenylalanines. Additionally, the C−H arylation of an ortho-methyl substituted β-phenylalanine containing both C(sp2)−H and remote C(sp3)−H bonds was investigated. β-Phenylalanine is an arylated β-amino acid motif present in various natural products, bioactive molecules, and β-peptides and it is a precursor to medicinally active compounds. Accordingly, this work contributes to the expansion of the library of unnatural β-phenylalanine (β-amino acid) derivatives through site-selective C−H functionalization.  相似文献   

12.
It has been established that an unsubstituted cyclopentadienyl rhodium(III) (CpRhIII) complex is a highly active catalyst for the aerobic oxidative ortho C−H bond olefination of sterically demanding ortho-substituted benzamides with alkenes. This catalysis was successfully applied to the diastereoselective synthesis of axially chiral N,N-dialkylbenzamides. The combination of the ruthenium(II)-catalyzed enantioselective hydrogenation and the CpRhIII-catalyzed diastereoselective ortho C−H bond olefination enabled the asymmetric synthesis of axially chiral N,N-dialkylbenzamide derivatives with high ee values.  相似文献   

13.
A Rh‐catalyzed ortho‐amidation cyclocondensation sequence gave a range of 4‐aminoquinazolines in high yield. The method features a remarkably mild C(sp2)?H activation step and can be exploited to rapidly access compounds with established biological activity.  相似文献   

14.
A series of aromatic bis-urea derivatives was prepared and their proton dissociation, as well as anion binding properties in DMSO were investigated. To this end, UV/Vis and 1H NMR spectroscopies and computational methods were employed. The synthesized molecules differed in the relative position of the urea moieties (ortho- and meta-derivatives) and in the functional groups (−H, −CH3, −OCH3, −NO2) in the para-position of the pendant phenyl groups. Remarkably high acidities of the compounds (logK1H≈14), were ascribed primarily to the stabilizing effect of the aromatic subunits. Quantum chemical calculations corroborated the conclusions drawn from experimental data and provided information from the structural point of view. Knowledge regarding protonation properties proved to be essential for reliable quantitative determination of anion binding affinities. Studied receptors were selective for acetate and dihydrogen phosphate among several anions. Formation of their complexes of 1:1 and 1:2 (ligand/anion) stoichiometries was quantitatively characterized. Proton transfer was taken into account in the course of data analysis, which was especially important in the case of AcO. ortho-Receptors were proven to be more efficient acetate binders, achieving coordination with all four NH groups. The meta-analogues preferred dihydrogen phosphate, which acted as both hydrogen bond donor and acceptor. Cooperative binding was detected in the case of 1:2 H2PO4 complexes, which was assigned to formation of interanionic hydrogen bonds.  相似文献   

15.
Remote C−H functionalization of heterocyclic biaryls will be of great importance in synthesis and medicinal chemistry. Through adjusting the geometric relationship of the directing atom and target C−H bonds, two new catalytic templates have been developed to enable the functionalization of the more hindered ortho-C−H bonds of heterobiaryls bearing directing heteroatom at the meta- or para-positions, affording unprecedented site-selectivity. The use of template chaperone also overcomes product inhibition and renders the directing templates catalytic. The utility of this protocol was demonstrated by olefination of heterocyclic biaryls with various substituents, overriding conventional steric and electronic effects. These ortho-C−H olefinated heterobiaryls are sterically hindered and can often be challenging to prepare through aryl-aryl coupling reactions.  相似文献   

16.
Disazo dyes from 6-amino-1-hydroxy-naphthalene-3-sulfonic acid (J acid) were synthesized by coupling ortho-hydroxy monoazo dyes with different diazonium compounds in acid medium (dyes No 3 – 14 . A second coupling to the ortho position of the amino group was also possible with the copper complexes of o,o' -dihydroxy monoazo dyes from 8-amino-1-hydroxynaphthalene-3,6-disulfonic acid (H acid) dyes No 19 – 22 ). This is a reversal of the well known rule that the formation of disazo dyes with aminonaphthol-sulfonic acids is only practicable when an acid coupling is followed by an alkaline one. 5-Amino-1-hydroxy-naphthalene-3-sulfonic acid (M acid), which is said to form no disazo dyes, could be coupled twice with several diazonium compounds to yield disazo dyes (dyes No 24 , 26 , 27 , 29 ).  相似文献   

17.
A simple cobalt-diphosphine catalyst has been found to efficiently promote intramolecular cyclization of ortho-cyclopropylvinyl- and cyclopropylidenemethyl-substituted benzaldehydes into benzocyclooctadienone and benzocycloheptadienone derivatives, respectively. This ring-opening hydroacylation likely involves aldehyde C−H oxidative addition, olefin insertion, cyclopropane cleavage by β-carbon elimination, and C−C bond-forming reductive elimination, as was supported by mechanistic experiments and DFT calculations.  相似文献   

18.
The straightforward access to a new class of aza-polyaromatics is reported. Starting from readily available fluorinated s-tetrazine, a cyclization process with azide leads to the formation of an unprecedented tetrazo[1,2-b]indazole or a bis-tetrazo[1,2-b]indazole (cis and trans conformers). Based on the new nitrogen core, further N-directed palladium-catalyzed ortho-C−H bond functionalization allows the introduction of halides or acetates. The physicochemical properties of these compounds were studied by a joint experimental/theoretical approach. The tetrazo[1,2-b]indazoles display solid-state π-stacking, low reduction potential, absorption in the visible range up to the near-infrared, and intense fluorescence, depending on the molecular structure.  相似文献   

19.
Aryl alkenes represents one of the most widely occurring structural motif in countless drugs and natural products, and direct C−H functionalization of aryl alkenes provides atom- step efficient access toward valuable analogues. Among them, group-directed selective olefinic α- and β-C−H functionalization, bearing a directing group on the aromatic ring, has attracted remarkable attentions, including alkynylation, alkenylation, amino-carbonylation, cyanation, domino cyclization and so on. These transformations proceed by endo- and exo−C−H cyclometallation and provide aryl alkene derivatives in excellent site- stereo-selectivity. Enantio-selective α- and β- olefinic C−H functionalization were also covered to synthesis axially chiral styrenes.  相似文献   

20.
In recent years, the merging of electrosynthesis with 3d metal catalyzed C−H activation has emerged as a sustainable and powerful technique in organic synthesis. Despite the impressive advantages, the development of an enantioselective version remains elusive and poses a daunting challenge. Herein, we report the first electrooxidative cobalt-catalyzed enantio- and regioselective C−H/N−H annulation with olefins using an undivided cell at room temperature (up to 99 % ee). tBu-Salox, a rationally designed Salox ligand bearing a bulky tert-butyl group at the ortho-position of phenol, was found to be crucial for this asymmetric annulation reaction. A strong cooperative effect between tBu-Salox and 3,4,5-trichloropyridine enabled the highly enantio- and regioselective C−H annulation with the more challenging α-olefins without secondary bond interactions (up to 96 % ee and 97 : 3 rr). Cyclovoltametric studies, and the preparation, characterization, and transformation of cobaltacycle intermediates shed light on the mechanism of this reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号