首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequence specific recognitions between DNAs and proteins play important roles in many biological functions. The use of double-stranded DNA arrays (ds-DNA arrays) for studying sequence specific recognition between DNAs and proteins is a promising method. Here we report the use of a ds-DNA probe with multi operation sites of restriction proteins in the middle sequence to investigate DNA-protein sequence-specific interactions including methylation. We arranged EcoR I site and Rsa I site on the same duplex DNA probe to fabricate ds-DNA arrays. We used the ds-DNA arrays to study DNA-restriction enzyme reactions before and after duplex DNA methylation under different probe concentration and reaction time conditions. Our results indicated that the ds-DNA arrays can be further biochemically modified and made accessible for interactions between DNAs and proteins in complex multi-step gene-regulation processes.  相似文献   

2.
The micrometer-scale assembly of various DNA nanostructures is one of the major challenges for further progress in DNA nanotechnology. Programmed patterns of 1D and 2D DNA origami assembly using specific DNA strands and micrometer-sized lattice assembly using cross-shaped DNA origami were performed on a lipid bilayer surface. During the diffusion of DNA origami on the membrane surface, the formation of lattices and their rearrangement in real-time were observed using high-speed atomic force microscopy (HS-AFM). The formed lattices were used to further assemble DNA origami tiles into their cavities. Various patterns of lattice–tile complexes were created by changing the interactions between the lattice and tiles. For the control of the nanostructure formation, the photo-controlled assembly and disassembly of DNA origami were performed reversibly, and dynamic assembly and disassembly were observed on a lipid bilayer surface using HS-AFM. Using a lipid bilayer for DNA origami assembly, it is possible to perform a hierarchical assembly of multiple DNA origami nanostructures, such as the integration of functional components into a frame architecture.  相似文献   

3.
The arrangement of DNA‐based nanostructures into extended higher order assemblies is an important step towards their utilization as functional molecular materials. We herein demonstrate that by electrostatically controlling the adhesion and mobility of DNA origami structures on mica surfaces by the simple addition of monovalent cations, large ordered 2D arrays of origami tiles can be generated. The lattices can be formed either by close‐packing of symmetric, non‐interacting DNA origami structures, or by utilizing blunt‐end stacking interactions between the origami units. The resulting crystalline lattices can be readily utilized as templates for the ordered arrangement of proteins.  相似文献   

4.
A novel three‐dimensional (3D) superstructure based on the growth and origami folding of DNA on gold nanoparticles (AuNPs) was developed. The 3D superstructure contains a nanoparticle core and dozens of two‐dimensional DNA belts folded from long single‐stranded DNAs grown in situ on the nanoparticle by rolling circle amplification (RCA). We designed two mechanisms to achieve the loading of molecules onto the 3D superstructures. In one mechanism, ligands bound to target molecules are merged into the growing DNA during the RCA process (merging mechanism). In the other mechanism, target molecules are intercalated into the double‐stranded DNAs produced by origami folding (intercalating mechanism). We demonstrated that the as‐fabricated 3D superstructures have a high molecule‐loading capacity and that they enable the high‐efficiency transport of signal reporters and drugs for cellular imaging and drug delivery, respectively.  相似文献   

5.
The topological properties of DNA molecules, supercoiling, knotting, and catenation, are intimately connected with essential biological processes, such as gene expression, replication, recombination, and chromosome segregation. Non-trivial DNA topologies present challenges to the molecular machines that process and maintain genomic information, for example, by creating unwanted DNA entanglements. At the same time, topological distortion can facilitate DNA-sequence recognition through localized duplex unwinding and longer-range loop-mediated interactions between the DNA sequences. Topoisomerases are a special class of essential enzymes that homeostatically manage DNA topology through the passage of DNA strands. The activities of these enzymes are generally investigated using circular DNA as a model system, in which case it is possible to directly assay the formation and relaxation of DNA supercoils and the formation/resolution of knots and catenanes. Some topoisomerases use ATP as an energy cofactor, whereas others act in an ATP-independent manner. The free energy of ATP hydrolysis can be used to drive negative and positive supercoiling or to specifically relax DNA topologies to levels below those that are expected at thermodynamic equilibrium. The latter activity, which is known as topology simplification, is thus far exclusively associated with type-II topoisomerases and it can be understood through insight into the detailed non-equilibrium behavior of type-II enzymes. We use a non-equilibrium topological-network approach, which stands in contrast to the equilibrium models that are conventionally used in the DNA-topology field, to gain insights into the rates that govern individual transitions between topological states. We anticipate that our quantitative approach will stimulate experimental work and the theoretical/computational modeling of topoisomerases and similar enzyme systems.  相似文献   

6.
DNA nanotechnology enables the synthesis of nanometer‐sized objects that can be site‐specifically functionalized with a large variety of materials. For these reasons, DNA‐based devices such as DNA origami are being considered for applications in molecular biology and nanomedicine. However, many DNA structures need a higher ionic strength than that of common cell culture buffers or bodily fluids to maintain their integrity and can be degraded quickly by nucleases. To overcome these deficiencies, we coated several different DNA origami structures with a cationic poly(ethylene glycol)–polylysine block copolymer, which electrostatically covered the DNA nanostructures to form DNA origami polyplex micelles (DOPMs). This straightforward, cost‐effective, and robust route to protect DNA‐based structures could therefore enable applications in biology and nanomedicine where unprotected DNA origami would be degraded.  相似文献   

7.
We report a synthetic biology‐inspired approach for the engineering of amphipathic DNA origami structures as membrane‐scaffolding tools. The structures have a flat membrane‐binding interface decorated with cholesterol‐derived anchors. Sticky oligonucleotide overhangs on their side facets enable lateral interactions leading to the formation of ordered arrays on the membrane. Such a tight and regular arrangement makes our DNA origami capable of deforming free‐standing lipid membranes, mimicking the biological activity of coat‐forming proteins, for example, from the I‐/F‐BAR family.  相似文献   

8.
DNA具有非凡的分子识别性能和显著的结构特征,这使得它在材料的纳米级调控方面具有独特的优越性,在许多领域也展现出广阔的应用前景。本文从模块化DNA自组装和DNA折纸术两个方面综述了近些年DNA纳米技术,包括近年来DNA纳米技术中比较新型的组装方法;并从DNA纳米结构作为模板定位纳米粒子和蛋白以及用于生物医药等方面介绍了DNA纳米技术的应用;同时,对DNA纳米技术发展及应用进行了展望。  相似文献   

9.
10.
Herein, we report label‐free detection of single‐molecule DNA hybridization dynamics with single‐base resolution. By using an electronic circuit based on point‐decorated silicon nanowires as electrical probes, we directly record the folding/unfolding process of individual hairpin DNAs with sufficiently high signal‐to‐noise ratio and bandwidth. These measurements reveal two‐level current oscillations with strong temperature dependence, enabling us to determine the thermodynamic and kinetic properties of hairpin DNA hybridization. More importantly, successive, stepwise increases and decreases in device conductance at low temperature on a microsecond timescale are successfully observed, indicating a base‐by‐base unfolding/folding process. The process demonstrates a kinetic zipper model for DNA hybridization/dehybridization at the single base‐pair level. This measurement capability promises a label‐free single‐molecule approach to probe biomolecular interactions with fast dynamics.  相似文献   

11.
DNA self-assembly allows the construction of nanometre-scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique designed as a model system with which to explore the mechanism of assembly. The origami fold is controlled through single-stranded loops embedded in a double-stranded DNA template and is programmed by a set of double-stranded linkers that specify pairwise interactions between loop sequences. Assembly is via T-junctions formed by hybridization of single-stranded overhangs on the linkers with the loops. The sequence of loops on the template and the set of interaction rules embodied in the linkers can be reconfigured with ease. We show that a set of just two interaction rules can be used to assemble simple T-junction origami motifs and that assembly can be performed at room temperature.  相似文献   

12.
The molecular recognition properties of DNA gave rise to many novel materials and applications such as DNA biosensors, DNA‐functionalized colloidal materials, DNA origami and DNA‐based directed surface assembly. The DNA‐functionalized surfaces are used in biosensors and for programmed self‐assembly of biological, organic and inorganic moieties into novel materials. However, surface density, length, and linker design of the surface functionalized DNAs significantly influence the properties of DNA‐driven assemblies and materials. This perspective discusses the understanding of structure and dynamics of DNA immobilized on the surfaces from the theoretical point of view including recent progress in analytical theories, atomistic simulations, and coarse‐grained models. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1563–1568, 2011  相似文献   

13.
Stimuli-responsive switching molecules have been widely investigated for the purpose of the mechanical control of biomolecules. Recently developed arylazopyrazole (AAP) shows photoisomerization activity, displaying a faster response to light-induced conformational changes and unique absorption spectral properties compared with those of conventionally used azobenzene. Herein, it is demonstrated that AAP can be used as a photoswitching molecule to control photoinduced assembly and disassembly of DNA origami nanostructures. An AAP-modified DNA origami has been designed and constructed. It is observed that the repeated assembly and disassembly of AAP-modified X-shaped DNA origami and hexagonal origami with complementary strands can be achieved by alternating UV and visible-light irradiation. Closed and linear assemblies of AAP-modified X-shaped origami were successfully formed by photoirradiation, and more than 1 μm linear assemblies were formed. Finally, it is shown that the two photoswitches, AAP and azobenzene, can be used in tandem to independently control different assembly configurations by using different irradiation wavelengths. AAP can extend the variety of available wavelengths of photoswitches and stably result in the assembly and disassembly of various DNA origami nanostructures.  相似文献   

14.
DNA self‐assembly allows the construction of nanometre‐scale structures and devices. Structures with thousands of unique components are routinely assembled in good yield. Experimental progress has been rapid, based largely on empirical design rules. Herein, we demonstrate a DNA origami technique designed as a model system with which to explore the mechanism of assembly. The origami fold is controlled through single‐stranded loops embedded in a double‐stranded DNA template and is programmed by a set of double‐stranded linkers that specify pairwise interactions between loop sequences. Assembly is via T‐junctions formed by hybridization of single‐stranded overhangs on the linkers with the loops. The sequence of loops on the template and the set of interaction rules embodied in the linkers can be reconfigured with ease. We show that a set of just two interaction rules can be used to assemble simple T‐junction origami motifs and that assembly can be performed at room temperature.  相似文献   

15.
Since the arrival of DNA nanotechnology nearly 40 years ago, the field has progressed from its beginnings of envisioning rather simple DNA structures having a branched, multi-strand architecture into creating beautifully complex structures comprising hundreds or even thousands of unique strands, with the possibility to exactly control the positions down to the molecular level. While the earliest construction methodologies, such as simple Holliday junctions or tiles, could reasonably be designed on pen and paper in a short amount of time, the advent of complex techniques, such as DNA origami or DNA bricks, require software to reduce the time required and propensity for human error within the design process. Where available, readily accessible design software catalyzes our ability to bring techniques to researchers in diverse fields and it has helped to speed the penetration of methods, such as DNA origami, into a wide range of applications from biomedicine to photonics. Here, we review the historical and current state of CAD software to enable a variety of methods that are fundamental to using structural DNA technology. Beginning with the first tools for predicting sequence-based secondary structure of nucleotides, we trace the development and significance of different software packages to the current state-of-the-art, with a particular focus on programs that are open source.  相似文献   

16.
17.
The modification of the backbone properties of DNA origami nanostructures through noncovalent interactions with designed intercalators, based on acridine derivatized with side chains containing esterified fatty acids or oligo(ethylene glycol) residues is reported. Spectroscopic analyses indicate that these intercalators bind to DNA origami structures. Atomic force microscopy studies reveal that intercalator binding does not affect the structural intactness but leads to altered surface properties of the highly negatively charged nanostructures, as demonstrated by their interaction with solid mica or graphite supports. Moreover, the noncovalent interaction between the intercalators and the origami structures leads to alteration in cellular uptake, as shown by confocal microscopy studies using two different eukaryotic cell lines. Hence, the intercalator approach offers a potential means for tailoring the surface properties of DNA nanostructures.  相似文献   

18.
Site-directed cleavage of single- and double-stranded DNAs by an oligonucleotide conjugate with 5-[N-(3-aminopropyl)sulfamoyl]-2-bromobenzoic acid was investigated. When forming duplex complexes with a single-stranded DNA and triplex complexes with a double-stranded DNA, this conjugate cleaves DNA near the binding site in the presence of copper ions and free o-bromobenzoic acid. The efficacy and specificity of DNA cleavage by this conjugate and other oligonucleotide conjugates bearing tetracarboxyphthalocyanine CoII and bleomycin A5 as reactive groups were compared.  相似文献   

19.
We report the use of DNA origami nanostructures, functionalized with aptamers, as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner. We test the system against Gram‐positive (Bacillus subtilis) and Gram‐negative (Escherichia coli) targets. We use direct stochastic optical reconstruction microscopy (dSTORM) and atomic force microscopy (AFM) to characterize the DNA origami nanostructures and structured illumination microscopy (SIM) to assess the binding of the origami to the bacteria. We show that treatment with lysozyme‐functionalized origami slows bacterial growth more effectively than treatment with free lysozyme. Our study introduces DNA origami as a tool in the fight against antibiotic resistance, and our results demonstrate the specificity and efficiency of the nanostructure as a drug delivery vehicle.  相似文献   

20.
During the development of structural DNA nanotechnology, the emerging of scaffolded DNA origami is marvelous. It utilizes DNA double helix inherent specificity of Watson‐Crick base pairing and structural features to create self‐assembling structures at the nanometer scale exhibiting the addressable character. However, the assembly of DNA origami is disorderly and unpredictable. Herein, we present a novel strategy to assemble the DNA origami using rolling circle amplification based DNA nanoribbons as the linkers. Firstly, long single‐stranded DNA from Rolling Circle Amplification is annealed with several staples to form kinds of DNA nanoribbons with overhangs. Subsequently, the rectangle origami is formed with overhanged staple strands at any edge that would hybridize with the DNA nanoribbons. By mixing them up, we illustrate the one‐dimensional even two‐dimensional assembly of DNA origami with good orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号